

SSR DEGREE COLLEGE (AUTONOMOUS) NIZAMABAD
SEM –I INTERNAL – II
M.SC. PHYSICS
(Classical mechanics)
QUESTION BANK

I. Multipule Choice

1. Which quantity replaces force in Hamiltonian mechanics?
A) Energy B) Momentum C) Hamiltonian
D) Generalized momentum
Answer: D
2. For a conservative system, the Hamiltonian represents:
A) Kinetic energy B) Potential energy C) Total energy D) Work done
Answer: C
3. For central force motion, which coordinate is cyclic?
A) Radial coordinate B) Time C) Azimuthal angle D) Polar angle
Answer: C
4. If a system has two cyclic coordinates, the number of constants of motion is:
A) One B) Two C) Three D) Zero
Answer: B
5. If a coordinate q is cyclic, then the corresponding conserved quantity is:
A) Energy B) Force C) Generalized momentum D) Velocity
Answer: C
6. Which of the following is equivalent to Hamilton's equations?
A) Newton's laws B) Lagrange's equations
C) Poisson bracket relations D) Schrödinger equation
Answer: C
7. The Hamilton–Jacobi equation plays an important role in
A) Thermodynamics B) Quantum mechanics
C) Fluid mechanics D) Statistical mechanics
Answer: B

8. The Hamilton–Jacobi method is mainly used to

- A) Quantize classical systems
- B) Solve equations of motion by separation of variables
- C) Find forces
- D) Derive Newton's laws

Answer: B

9. If two eigenfunctions correspond to different eigenvalues of a Hermitian operator, they are

- A) Equal
- B) Linearly dependent
- C) Orthogonal
- D) Parallel

Answer: C

10. Which of the following operators has continuous eigenvalues?

- A) Position operator
- B) Spin operator
- C) Angular momentum operator
- D) Hamiltonian of harmonic oscillator

Answer: A

11. The principle of least action states that the actual path followed by a system is the one for which

- A) Kinetic energy is minimum
- B) Potential energy is minimum
- C) Action is minimum (or stationary)
- D) Momentum is minimum

Answer: C

12. The equations of motion obtained from the principle of least action are

- A) Newton's equations
- B) Hamilton's equations
- C) Euler–Lagrange equations
- D) Poisson equations

Answer: C

13. Hamiltonian mechanics is especially useful in

- A) Rigid body dynamics only
- B) Fluid mechanics
- C) Quantum mechanics and statistical mechanics
- D) Optics only

Answer: C

14. A transformation generated by a generating function is

- A) Always non-canonical
- B) Always canonical
- C) Sometimes canonical
- D) Never canonical

Answer: B

15. Which of the following quantities remains invariant under a canonical transformation?

- A) Hamiltonian
- B) Action integral
- C) Kinetic energy
- D) Potential energy

Answer: B

16. Action–angle variables are mainly used for

- A) Non-conservative systems
- B) Systems with constraints
- C) Periodic (bound) systems
- D) Relativistic systems

Answer: C

17. The angle variable \theta increases

- A) Linearly with time
- B) Exponentially with time
- C) Randomly with time
- D) Quadratically with time

Answer: A

18. Hamilton's characteristic function W is related to Hamilton's principal function S by

- A) $S = W + Et$
- B) $S = W - Et$
- C) $W = S - Et$
- D) $W = Et - S$

Answer: C

19. Hamilton's characteristic function is applicable when the Hamiltonian is

- A) Time-dependent
- B) Explicitly time-independent
- C) Relativistic
- D) Dissipative

Answer: B

20. The constants of integration appearing in W correspond to

- A) Generalized coordinates
- B) Generalized velocities
- C) Canonical momenta
- D) Action variables

Answer: C

II. Fill in the blanks

1. The Hamilton–Jacobi method is based on a special type of ____ transformation.

Answer: canonical

2. There are ____ standard types of generating functions used in canonical transformations.

Answer: four

3. The Lagrange bracket of a variable with itself is always ____ zero

4. Poisson brackets are ____ with respect to their operands. Antisymmetric

5. The Poisson bracket of two functions A and B is denoted by ____ $\{A, B\}$

6. A linear triatomic molecule consists of ____ atoms arranged in a ____ line. three, straight

7. The number of vibrational degrees of freedom of a linear triatomic molecule is ____ 4

8. The force constant of the bond is denoted by ____ k

9. Action–angle variables are useful in studying ____ mechanical systems. integrable

10. Action–angle variables are obtained using a ____ transformation. Canonical

11. The Kepler problem describes the motion of a particle under an inverse-square ____ force.

Answer: central

12. The angular action variable is equal to the magnitude of the _____ momentum.

Answer: angular

13. The equality of frequencies leads to the closure of _____ orbits.

Answer: elliptical

14. The two bending vibrations in a linear triatomic molecule are _____.

Answer: degenerate

15. Normal coordinates are obtained by forming linear combinations of the _____ coordinates.

Answer: internal

16. The principle of least action states that the actual path of a system makes the action _____.

Answer: stationary

17. The variation of the Hamiltonian action leads to _____ equations of motion.

Answer: Hamilton's

18. The Hamiltonian equations obtained from the action principle are _____-order differential equations.

Answer: first

19. The Lagrange bracket $[q_i, q_j]$ is equal to _____.

Answer: 0

20. Poisson brackets are defined in _____ space.

Answer: phase

III. Descriptive Questions

1. show that poisson brackets are invariant under canonical transformation
2. Derive Hamiltons equation of motion for system of particles
3. Explain principal axis transformation and obtain frequencies and normal coordinates
4. explain the Hamiltonian characteristic function and discuss harmonic oscillator
5. what are action angle variables?
6. show that the momentum corresponding the cyclic coordinate is conserved