

SSR DEGREE COLLEGE (AUTONOMOUS) NIZAMABAD
SEM –I INTERNAL – II
M.SC. PHYSICS
(mathematical physics)
QUESTION BANK

I. Multiple Choice Questions

1. The bisection method is based on which theorem?
A) Taylor's theorem B) Rolle's theorem C) Intermediate Value Theorem
D) Mean Value Theorem
Answer: C
2. The bisection method can be applied only if:
A) $f(x)$ is differentiable B) $f(x)$ is continuous and changes sign in the interval
C) $f(x)$ is increasing D) $f(x)$ is polynomial
Answer: B
3. The forward difference quotient is used to approximate:
A) Integration B) Second derivative C) First derivative D) Root of equation
Answer: C
4. Central difference quotient is not suitable at:
A) Boundary points B) Interior points C) Smooth functions D) Uniform data
Answer: A
5. Central difference quotient gives better accuracy than forward difference because:
A) It uses two step sizes B) It cancels even-order error terms
C) It uses backward expansion only D) It requires smaller data
Answer: B
6. Newton–Cotes formulas are obtained using:
A) Taylor series B) Newton's interpolation C) Lagrange interpolation
D) Finite differences
Answer: C
7. Simpson's 1/3 rule requires the number of subintervals to be:
A) Odd B) Prime C) Even D) Multiple of 3
Answer: C
8. Simpson's 3/8 rule requires number of subintervals to be:
A) Even B) Odd C) Multiple of 2 D) Multiple of 3
Answer: D
9. Simpson's 3/8 rule is generally used when:
A) Number of intervals is even B) Number of intervals is a multiple of 3

C) Function is discontinuous D) End points are unknown

Answer: B

10. The Taylor series method is mainly used to solve:

A) Algebraic equations B) Linear equations
C) Ordinary differential equations D) Partial differential equations

Answer: C

11. Muller's method fails mainly when

A. Roots are complex B. Initial approximations are poor
C. Function is polynomial D. Function is continuous

Answer: B

12. Muller's method can find

A. Only real roots B. Only rational roots C. Only irrational roots
D. Both real and complex roots

Answer: D

13. The two-point Gauss-Legendre quadrature is exact for polynomials up to degree

A) 1 B) 2 C) 3 D) 4

Answer: C

14. In Gaussian quadrature, the weights and nodes are chosen to

A) Minimize truncation error B) Simplify computations
C) Maximize degree of exactness D) Reduce round-off errors

Answer: C

15. How many initial approximations are required in the secant method?

a) One b) Two c) Three d) None

Answer: b

16. A second-rank tensor transforms with

A) One transformation matrix B) Two transformation matrices
C) Three matrices D) Determinant only

Answer: B) Two transformation matrices

17. Two tensors can be added if they have

A) Same magnitude B) Same rank and type
C) Same components D) Same units only

Answer: B) Same rank and type

18. The sum of two second-rank tensors is a

A) Scalar B) Vector C) Second-rank tensor D) Third-rank tensor

Answer: C) Second-rank tensor

19. The number of independent components of a symmetric second-rank tensor in 3 dimensions is

A) 3 B) 6 C) 9 D) 1

Answer: B

20. Which of the following is an example of an antisymmetric tensor in physics?

- A) Stress tensor
- B) Moment of inertia tensor
- C) Angular momentum tensor
- D) Metric tensor

Answer: C

II. Fill in the blanks

1. Euler method requires only the ____ derivative of the function. First
2. Euler method is less accurate because it neglects ____ order terms. Higher
3. In fourth-order Runge–Kutta method, the number of intermediate slopes used is ____
Four
4. Runge–Kutta method uses ____ slopes to improve accuracy. Multiple
5. The weight factors in Gaussian quadrature are obtained from ____ polynomials.
Orthogonal
6. The total error in numerical differentiation is the sum of ____ error and ____ error.
Truncation, round-off
7. Regula–Falsi method is a combination of ____ and ____ methods. Bisection, Secant
8. Root finding methods are mainly applied to ____ equations. Nonlinear
9. Increasing the number of terms in Taylor series expansion ____ the accuracy. Increases
10. Taylor series method generally gives ____ accuracy than Euler's method. Higher
11. Contravariant tensor components are usually written with ____ indices. **Answer: upper**
12. The scalar product of a covariant and contravariant vector results in a ____.
Answer: scalar
13. The conductivity of a crystal in solid-state physics is expressed as a ____ tensor.
(second-order)
14. In general relativity, gravitation is described using the ____ tensor. **(metric / Einstein)**
15. A covariant tensor of second order transforms with the ____ of the Jacobian matrix.
(square of the inverse)
16. The transformation law ensures that tensor equations are ____ independent.
(coordinate)
17. 7. The metric tensor is denoted by ____
18. 8. In Cartesian coordinates, the metric tensor components are -----
19. Addition and subtraction of tensors do not affect their ____ law. **Transformation**
20. Tensor addition is ____ and associative.

III. Descriptive Questions

1. Solve an ODE using runge kutta forth order method
2. find a real root of the equation using bisection method correct to 3 decimal
3. explain addition ,subtraction and outer product of tensors
4. expain contraction and inner product of tensors
5. what are symmetric and anti symmetric tensors
6. what is Muller's method