S.S.R. DEGREE COLLEGE, (AUTONOMOUS) NIZAMABAD (C.C:5029)

I SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS

PHYSICS QUESTION BANK

SUB: WAVES

			SOD. WAVES			
I.	Multiple Choice Que	estions				
1.	Transverse wave velo	ocity in a stretch	ned string?		()
	a) $\sqrt{\frac{T}{e}}$	b) $\sqrt{\frac{e}{\mu}}$	c) $\sqrt{\frac{T}{\mu}}$	D) $\sqrt{\frac{y}{e}}$		
2.	Which type of wave is	s a light wave.			()
	a) Transverse wave		b) Longitudinal wave			
	c) Both		d) None of the above			
3.	A travelling wave in a	stretched strin	g is described by the ed	quation y= A sin	(ωt-kx).	
	The maximum veloci	ty			()
	a)Aω	b) $\frac{\omega}{k}$	c) $\frac{\omega}{v}$	d) $\frac{k}{\omega}$		
4.	In longitudinal vibra	tions of a bar, th	ne particles of the bar		()
	a)move perpendicula	r to the length o	of the bar			
	b) move parallel to th	e length of the l	oar			
	c) remain at rest					
	d) move in a circular	path				
5.	In a bar fixed at one e	nd and free at t	he other, the fundamen	tal frequency is	()
	a) $V_1 = \frac{n}{2l} \sqrt{\frac{y}{e}}$		b) $V_1 = \frac{n}{4l} \sqrt{\frac{y}{e}}$			
	c) $V_1 = \frac{2n}{2l} \sqrt{\frac{y}{e}}$		d) $V_1 = \frac{n}{l} \sqrt{\frac{y}{e}}$			
6.	The rate at which a w	ave transports	energy is directly propo	ortional to	()
	a) The square of the v	vave's amplitud	e			
	b) the square of the w	vave's frequency	У			
	c) Both the square of	the wave's amp	litude and the square o	f its frequency.		
	d) The wave's freque	ency.				
7.	The frequency of tran	sverse vibratio	n of a stretched string i	s inversely prop	portiona	al to
					()
	a) Length of the string	g				

b) Square root of the tension

	c) Square root of the	mass per unit len	gth				
	d) Diameter of the string.						
8.	If the tension in a str	retched string is in	creased four tin	nes, keeping t	he length a	and ma	ss per unit
	length constant, the	fundamental frequ	uency will.		()
	a) Double	b) Halve	c) Rema	ain the same	d) None	of the a	bove
9.	Which of the followi	ng is the governin	g differential eq	uation for the	free longi	tudinal	vibration of a
	thin uniform bar.			()		
	a) $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$	where v= $\sqrt{\frac{y}{e}}$					
	b) $\frac{\partial^2 y}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial x^2}$	where $v = \sqrt{\frac{y}{e}}$					
	c) $\frac{\partial^2 y}{\partial x^2} + \frac{w^2}{v^2} \frac{\partial^2 y}{\partial t^2}$	= 0					
	d) $\frac{\partial^2 y}{\partial x^2} = v^2 \frac{\partial^2 y}{\partial t^2}$						
10.	What is the primary	cause of longitudi	nal vibrations i	n a bar?	()
	a) Gravity	b) Tem	perature change	es			
	c) External forces	d) Inter	nal stresses.				
11.	The mode shapes of	a bar free at both	ends have.		()
	a) Antinodes at both	ends					
	b) Nodes at both end	ds.					
	c) Node at one end a	nd antinode at oth	ner				
	d) Random displace	ment					
12.	12. Transverse wave equation in a bar is ())		
	a) $\frac{\partial^2 y}{\partial t^2} = \frac{-k^2}{v^2} \frac{\partial^4 y}{\partial x^4}$		b) $\frac{\partial^2 y}{\partial t^2} = -k^2 v^2$	$\frac{\partial^4 y}{\partial x^4}$			
	c) $\frac{\partial^4 y}{\partial x^4} = -\frac{k^2}{v^2} \frac{\partial^2 y}{\partial t^2}$		d) None				
13.	For a wave y= A sin	(kx-wt). the wave	length x is given	ı by	()
	a) $\lambda = \frac{2\pi}{k}$	b) $\lambda = \frac{k}{2\pi}$	c) $\lambda = \frac{w}{2\pi}$	d) $\lambda = \frac{2\pi}{w}$			
14.	In a stationary wave	, the distance bety	ween two consec	cutive nodes is	s (•)
	a) λ	b) $\frac{\lambda}{2}$	7	d)2 λ			
15.	If the fundamental fr	requency of a strir	ng is f, the freque	ency of the sec		one is.	
				C	()	
	a) 2f	b) 3f	c) 4f	d) $\frac{f}{2}$			

16.	. The energy transported by a transverse wave is	()				
) Amplitude b) Frequency						
	c) Time period d) Wave l	ength					
17.	. The transverse mechanical impedance of a vibra	ting bar is defined as	()			
	a) $\frac{Force}{acceleration}$ b) $\frac{For}{velocity}$	ce_ city					
	c) $\frac{velocity}{force}$ d) $\frac{dis}{dis}$	olcement force					
18.	. The S.I unit of transverse mechanical impedance	is	()			
	a) $\frac{N-s}{m}$ b) $\frac{N}{m}$ c) $\frac{m}{s^2}$ d)	kg m					
19.	. The wave length of the n^{th} mode in a bar free at \boldsymbol{b}	oth ends is	()			
	a) $\lambda_n = \frac{2l}{n}$ b) $\lambda_n = \frac{l}{n}$ c) $\lambda_n = \frac{4l}{n}$ d	$))\lambda_{n}=\frac{l}{2n}$					
20.	. If a steel bar has Y=2.0x10 $^{11}\mathrm{N/m^2}$ and $ ho=7800$	kg/m³, the velocity of longit	udinal	waves is			
	approximately		()			
	a) 1600m/s b) 5100 m/s						
	c) 8000 m/s d)12000 m/s						
21.	. Which one of the following is the differential equ	ation of SHM	()			
	a) $\frac{d^2x}{dt^2} + w^2 x = 0$ b) $\frac{dx}{dt} = wx$						
	c) $\frac{d^2x}{dt^2} - w^2 x = 0$ d)) $\frac{d^2x}{dx^2} + k = 0$						
22.	. In SHM, the acceleration is always		()			
	a) constant						
	b) Directed towards the mean position						
	c) Directed away form mean position.						
	d) Perpendicular to velocity						
23.	. At what point in its oscillation is the speed of a p	()				
	a) At the extreme positive displacement						
	b) At the extreme negative displacement						
	c) At the equilibrium position.						
	d) The speed is constant throughout the motion						
24.	. A torsional pendulum oscillates due to		()			
	a) Gravitational force b) Friction	aal force					
	c) Restoring torque due to wire d) Inertia	of mass					
25.	. If suspension and oscillation points are interchan	nged, the time period	()			
	a) Halves b) Doubles c)	Remain same d) Infin	ite				

26.	The time period of	of a torsional pendulum i	S		()
	a) T = $2\pi \sqrt{\frac{I}{c}}$	b) T = $2\pi \sqrt{\frac{c}{T}}$	c) T = $2\pi \sqrt{\frac{m}{K}}$	d) T =	$=2\pi\sqrt{\frac{L}{g}}$	
27.	Torsional pendul	um is often used to deter	mine		()
	a)Acceleration du	e to gravity				
	b) Torsional rigid	ity of a wire				
	c) Young's modul	us of a material				
	d) Magnetic field	of earth				
28.	In a damped harn	nonic oscillator, the amp	litude of oscillation.		()
	a) Increases with	time				
	b) Remains const	ant with time				
	c) Decreases expo	onentially with time				
	d) Decreases lines	arly with time				
29.	The equivalent le	ngth of a compound pend	dulum is		()
	a) L = $\frac{I}{mg}$	b) L = $\frac{I}{ml}$	c) L = $\frac{I}{mk}$	d) L = $\frac{I}{m}$	· ·	
30.	A compound pend	dulum can be used to det	termine		()
	a)Gravitational ad	cceleration (g)	b) Modulus of rigidi	ty		
	c) Young's modul	us	d) Coefficient of res	titution		
31.	31. The restoring torque in a compound pendulum is proportional to				()
	a) velocity		b) Angular displace	ment		
	c) Acceleration		d) Mass			
II.	Fill in the blanks	S				
1.	The impedance of	f a transverse wave on a	string z=			
2.	In a bar fixed at both ends, the second overtone corresponds to the harmonic.					nonic.
3.	The n th mode frequency of a bar fixed at one end and free at the other is $v_n =$					·
4.	The boundary con	ndition for a fixed end of	a vibrating bar is that th	e displace	ement is	i
5.	In transverse vibi	rations, the particles of th	he bar move	to the len	gth of th	ne bar.
6.	The product of transverse impedance and particle velocity gives the in the wave					the wave.
7.	For a bar in trans	verse vibrations, the imp	pedance depends on its_		<i>,</i>	and
8.	The relationship l	between velocity, wave l	ength and frequency			
9.	The general equa	tion of a transverse harn	nonic wave moving in th	e +x direc	tion is_	-
10.	0. The time taken for a particle to complete one oscillation is called the					
11.	Example for longi	tudinal waves	_			

	12.	The frequency of torsional pendulum is
	13.	The general equation of motion for a damped harmonic oscillator is
	14.	The time period of a compound pendulum is
	15.	A uniform bar suspended from one end and oscillation an example of a pendulum
	16.	The distance covered by a particle executing SHM with amplitude A in one time period is
	17.	Equation for a SHM of particle is y=0.3 sin (t+ $\frac{\pi}{6}$). Then frequency
	18.	The motion that repeats itself after equal intervals of time is called
	19.	A particle executes SHM with amplitude A= $0.05m$ and angular frequency $w=10rad/s^2$
		V_{max} =
	20.	The phase difference between displacement and velocity in SHMis
	21.	The restoring force in simple harmonic motion is always directed towards the position
III		Short answer questions
	1.	Show that the wave equation in case of transverse waves on a string is given by $\frac{\partial^2 y}{\partial x^2} =$
		$\frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$ where v= $(\frac{T}{m})^{1/2}$
	2.	What are the characteristics of a simple harmonic motion?
	3.	What are damped oscillations? Deduce the equation of motion of a damped harmonic oscillator and
		obtain its solution.
	4.	Define transverse waves? Obtain the frequencies of vibrations of stretched string clamped at both

5. Explain how the rigidity modulus of the material of a given wire is determined.

ends.