S.S.R. DEGREE COLLEGE, (AUTONOMOUS) **NIZAMABAD (C.C:5029)**

I - SEMESTER INTERNAL ASSESSMENT - II EXAMINATIONS

MATHEMATICS QUESTION BANK

is

	Itiple Choice (If the auruillary		s comple	ex conjug	ate roo	ts then the co	ompleme	ntar	y fui	nctic
									Α	_
	a) e^{ax} (C ₁ Cos βx -			•	•		x)			
	c) $e^{\beta X}$ (C ₁ Cos $\propto \mu$		•	•	•	•				
2.		on of an equation having the roots 1,2 is(B))	
	a) $C_1e^x + C_2 e^x$		•	$e^x + C_2e^2$						
	c) $C_1e^{-x} + C_2 e^{2X}$ d) $C_1e^{-x} + C_2 e^{-2X}$									
3.	The compleme	ntary functio	n of an e	quation	having t	:he roots -1,-:	1, 4 is	(С)
	a) $C_1e^x + C_2 e^x C_1$	b) C:	o) $C_1e^{-x} + C_2 e^{-x} + C_3e^{4x}$							
	c) $C_1 + C_2 X$) $e^{-X} -$	⊦ C₃ e ^{4X}	d) N	one						
4.	The G.S of nth	order non ho	mogene	ous D.E is	S			(Α)
	a) $Y = Y_C + yP$	b)y=y _C . y _p	c) Y=	-y c - y p	d)Y= Y	$'_{c}(^{1}/_{yp})$				
5.	The compleme	ntary function	n of an e	quation	having t	the roots 2+3	i is	(В)
	a) $Y_C = C_1 e^{2X} + C$	$c_2 e^{3X}$ b)	^{2X} (C1Cos	3X + C ₂ S	Sin3X)	c)y=y _C - yp	d)y=y	c(1/2)	(vn))
6.	The particular integral of $(D^2 - 5D + 6)$ y = 0 is $(D^2 - 5D + 6)$									
	a)1	b)5	c)6		d)0					
7.	The particular integral of $\frac{1}{D^2-1}$ Cos 3X is (C)									
	a) $\frac{1}{10}$ Cos3x		-							
8.	The Compleme	ntary function	on of (D ²	– 1) is		_		(D)
	a) $C_1 e^X + C_2 e^X$	b)C ₁ Cos h	x + C ₂ Sin	hx	c) Bot	h (a) & (b)	d) C ₁	e ^{2X} +	- C ₂ 6	2X
9.	The particular i	ntegral of $\frac{1}{D^2}$	$\frac{9}{+5D+4}$ is					(D)
	a)0			4						
10	. The compleme	ntary function	n of (D ²	+ 4) y is _	-			(Α)
	a) $C_1 \cos 2X + C_2 \sin 2X$ b) $C_1 \cos 2X + C_2 \sin 2X$		C₁Cosh2X	Cosh2X+ C ₂ Sinh2x						
	c) $(C_1 + C_2X)$ e2x	(d)($C_1 e^{2X} + C_2$	₂ e ^{-2X}						
11	. The Particular i	ntegral of 4>	² Can be	written				(Α)
	a) $AX^2 + BX + C$	b) .	4 X ² - BX+	C c) Ax ²	+ BX -	C d)- ((A)			
12	. In cauchy Eular	equation, 'X	' is subst	uted as						
	a) + b) Log	g + c)e	† d)No	one of the	ese					

13.	. The two linearly independent solutions of $(D^2 - 3D+2) Y$ is								D)	
	a) e ^{-X} , e ^{-2X}	b) e ^{-x} ,	e ^{2X}	c) e ^x , e	- 2X	d) e^{x} , e^{2x}					
14.	If $\emptyset(x) = x + \log x$ by Cauchy Euler Equation $\emptyset(x)$ becomes						(Α)		
	a) e++t	b) e+- t	c) e+ .t		d) t e+						
15.	n legendre's linear equation ax+b substitutedas							(В)	
	a) Log t	b) e ^t	c) e ^{-t}		d) Non	e					
16	5. Which of the following is miscellaneous D.E							(С)	
	$a)\frac{d^2y}{dx^2} = f(x)$	b) $\frac{dx}{dy} =$	$f^1(x)$		c) $\frac{d^2y}{dx^2}$ =	= f(x)	d) Nor	ne			
17.	which of the follo	owing is partia	l differe	ntial eq	uation			(D)	
	a) $\frac{\partial^2}{\partial x}$ = p	b) $\frac{\partial^2}{\partial y}$ =	= <i>q</i>		c) $\frac{\partial^2 z}{\partial x^2}$	= r	d) All				
18.	18. the solution obtained from complete integral through assigning particular values to)	
	constants is							(В)	
	a) complete solu	tion b) part	ticular s	olution	c) both	1	d) Nor	ıe			
19	. If one of the solution of differential equation is known then the second solutio							on can be			
	determined by us	sing						(С)	
	a) method of un	of undetermined coeffitient			b) variation of parameter						
	c) Reduction of o	rder method			d) Non	e of these					
20	If $y_2 = y_1 \int u(x)$, ,						(В)	
	a) $\frac{e^{\int \frac{f_1(x)}{f_2(x)} dx}}{y_1^2}$ b) $\frac{e^{-\int \frac{f_1}{f_2}}}{y_2^2}$	$\frac{f(x)}{f(x)}dx$	c) $\frac{e^{\int \frac{f_2(t)}{f_1(t)}}}{y_1^2}$	$\frac{(x)}{(x)}dx$	d) $\frac{e^{-\int \frac{f}{f}}}{2}$	$\frac{\int_{2}^{2} \frac{(x)}{1} dx}{v_{1}^{2}}$					
ill In The Blanks											
	. The general solution of n^{th} order homogeneous differential equation is ${\color{red} {\bf complement}}$										

II. F

- 1 function.
- 2. The auxillary equation $(D^2 3D + 2)y = m^2-3m+2$.
- **3.** The roots of $(D^2 5D + 6)$ y are **2,3**.
- 4. If the roots of auxillary equation are real then complementary function is C₁e^{m1x}+C₂e^{m2x+....}
- 5. The particular integral for $f(D)y = e^{ax}$, $f(a) \neq 0$ is $e^{ax}/f(a)$
- 6. The value of $\frac{e^{2x}}{D^2+4D+3}$ is $e^{2x}/15$.
- 7. The auxillary equation having the roots 2,3 is m²-5m+6=0.
- 8. The complementary function of (D+2)(D-2) is $c_1e^{-2x}+c_2e^{2x}$
- **9.** The particular integral of differential equations depends on Q(x)
- 10. in method of undetermined coeffitients $f(D)y = f(D)y_D$
- 11. if 'y₁' is known solution then 'y₂' can be determined by formula $y_{2}+y_{1}\int 4(x)dx$
- 12. By substuting X= e^t Cauchy euler equation is converted in to linear equation with constant coeffitients.
- 13. The particular integral of (D²+4D+4)y =6e^x is $\frac{2}{3} \underline{e}^x$
- 14. In method of variation of parameters, the two linearly independent solutions can be determined from complem entary.

- 15. If $Q(x) = x^2$ in Cauchy –euler equation reduced to linear order differential equation the x^2 becomes e^{2t} .
- 16. The two linearly independent solution of (D²+4D+4)y are e^{-2x} .xe^{-2x}
- 17. <u>Partial differential equation</u> can be obtained by eliminating arbitrary constants (or) orbitrary functions in valuing two or more variables.
- 18. The solution of first order PDE that has two arbitrary can stants is called as complete intearal.
- 19. The linear PDE of first order is also called as Lagranges linear PDE.
- 20. The equation of the form $\frac{dx_1}{p_1} = \frac{dx_2}{p_2}$ $\frac{dx_n}{p_n} = \frac{dz}{R}$ is called as **<u>subsidiary equation</u>**.

III. Descriptive Questions

- 1. Solve $(D^2+4D+4)y = 4x^2+6e^x$ by method of undetermined coeffitient.
- 2. $(D^2+4D+4)y = n3x^{-2x}$ by the method of undetermined coeffitient.
- 3. Solve $(D^2-3D+2)y = sine^{-x}$ using the method of variation of parameter.
- 4. Solve $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + y = 2 \log x$.
- 5. Solve $x^2y^{11} xy^1 + y = 0$ given $y_1 = x$ as a solution