S.S.R. DEGREE COLLEGE, (AUTONOMOUS) NIZAMABAD (C.C:5029)

I SEMESTER INTERNAL ASSESSMENT-I EXAMINATIONS MATHEMATICS QUESTION BANK

I.	Multiple Choice Que	stions						
1.	The condition for exac	The condition for exactness for exact differential equation is						
			c) $\frac{\partial m}{\partial x} = \frac{\partial N}{\partial y}$	d) $\frac{\partial x}{\partial m}$	$=\frac{\partial y}{N}$			
2.	If Mx- Ny \neq 0 in Mdx +	ired integrating factor i	S	()			
	a) Mx+Ny	b) $\frac{1}{Mx+Ny}$	c) Mx – Ny	$d)\frac{1}{Mx-l}$	\overline{vy}			
3.	differential are mostly used in physics and Engeneering.)		
	a) Exact	b) Linear	c) Clairuts	d) Non	ie			
4.	Degree of $[1+=\left(\frac{dy}{dx}\right)^2]$	$]^3 = r^2 \left(\frac{d^2 y}{dx^2}\right)^2 \text{ is}\underline{\qquad}$			()		
	a) 1	b) 2	c) 3	d) 4				
5.	The degree of $y = x$ ($\left(\frac{dy}{dx}\right)\sqrt{1+\left(\frac{dy}{dx}\right)^2}$ is			()		
	a) 2	b) 3	c) 4	d) 1				
6.	The order of $x^3 \frac{d^3y}{dx^3} + x^3$	$2x^2 \frac{d^2y}{dx^2} - 3y = x \text{ is} \underline{\hspace{1cm}}$			()		
	a) 2	b) 3	c) 1	d) 4				
7.	. If Mdx+Ndy=0 is a homogenous equation such that $Mx+Ny\neq 0$ then the integrating factors							
	the differential equati			()			
	a) Mx+Ny	b) Mx-Ny	c) $\frac{1}{Mx+Ny}$	d) $\frac{1}{Mx-}$	Ny			
8.	If Mdx+Ndy= 0 such the	$\operatorname{nat} \frac{1}{M} \left(\frac{\partial N}{\partial X} - \frac{\partial m}{\partial y} \right) = f(y)$). then the integrating f	actor is	()		
	a) $e^{\int f(x)dx}$	b) <i>e x</i>	c) $e^{\int f(y)dy}$	d)) <i>e^y</i>				
9.	The number of orbitrary constants in the solution of a differential equation of degree '2' and							
	order '3' is				()		
	a) 3	b) 1	c) 5	d)2				
10.	Simultaneous differen	itial equations can be s	olved using		()		
	a) Multipliers Method	b) Gro	ouping Method					
	c) a&b	d) a (r	nor) b					
11.	The differential equat	$ion P^2 + 2py (c + x =$	y^2 is solvable for		()		
	a) x	b) y	c)p d) I	None of t	the abov	ve .		

12.	. In the differential equ	ation $f(x,y,p) = 0$) is solvable for 'x' the	en	()			
	a)y=f(x,p)	b)x=f(y,p)	c) $p=f(x,y)$	d) $f = p(x,y)$	y)				
13.	. The General solution	of $p^2 - 5p - 6 =$	= 0 where $p = \frac{dy}{dx}$ is		()			
	a) $(y-2x-c)(y+3x-c)=0$	b)	(y+2x-c)(y-3x-c)=0						
	c) $(y-2x-c)(y-3x-c) = 0$	b)	(y+2x+c)(y+3x+c) =	0					
14.	. The general solution o	of (y-px)(p-1)=p	p, $p = \frac{dy}{dx}$ is		()			
	a) y=cx	b)y=cx+ $\frac{c}{c+1}$	c) $y=cx+\frac{1}{c-1}$	d)y=cx+ $\frac{1}{c}$	<u>c</u> -1				
15.	. The degree of the diffe	erential equatio	on on y= $\sin \frac{dy}{dx}$ is		()			
	a) 1	b) 2	c) undefine	d d)0					
16.	The G.S of fourth orde	r differential ed	quation contains	_ arbitrary cons	tants				
					()			
	a) 4	b) 3	c) 2	d) 1					
17.	The equation $x^2 - 2y$	$2\frac{dy}{dx} = 0$ is	_		()			
	a)Non homogeneous		b) 1	Exact					
	c) Homogeneous d) None								
18.	The equation $\frac{dy}{dx} + \frac{ax}{hx}$	$\frac{+hy+g}{+by+f} = 0 \text{ is} \underline{\hspace{1cm}}$	_		()			
	a) Homogeneous	able							
	c) Exact	ous.							
19.	. The integrating factor	of $x \frac{dy}{dx} + y = y^2$	log x is		()			
	a) x	b) $\frac{1}{x}$	c) -x	d) x^2					
20.	. The orthogonal trajec	()						
	a) $r = 2c \sec \theta$	b)r= $2c \sin \theta$	c)r= $2c \cot \theta$	d) r= 2c cos	$\sec \theta$				
II.	Fill in the blanks								
1.	The solution of differential equation of the form $f(x)dx + g(y)dy = 0$ is $\int f(x)dx + \int g(y)dy = 0$								
2.	The equation $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$ is a Homogeneour D.E.								
3.	The integrating factor of $\frac{dy}{dx} - \frac{y}{x} = \log x$ is $\frac{1}{x}$. An equation of the form $\frac{dy}{dx} + py = Qy^n$ is known as Bernoulli equation . Exact differential equation is also known as Total D.E								
4.									
5.									

6. A given differential equation can be converted in to a exact differential equation by multiplying

with a **Integrating Factor**.

7. Exact differential equation is in the form of $\underline{Mdx + Ndy = 0}$.

- 8. Integrating factor of $\frac{\mathbf{d}(\frac{e^x}{y}) = ye^x dx e^x dy/y^2}{\mathbf{d} \cdot \mathbf{d} \cdot \mathbf{d$
- 9. $\frac{ydx xdy}{y^2}$ is integrating factor of $d\left(\frac{x}{y}\right)$.
- 10. If an exact differential equation is homogeneous then integrating factor is $\frac{1}{Mx+Ny}$. if Mx+Ny≠0.
- 11. The differential equation of the form $y=xf_1(p)+f_2(p)$ is known as **Lagrane equation**.
- 12. If the differential equation f(x,y,z)=0 is solvable for y, then y=f(x,y).
- 13. The clairuts equation of the form is y = px + f(p).
- 14. The rate of disintegration proportional to the amount 'A' is $\frac{dA}{dt}$ =-KA.
- 15. The orthogonal trajectories for the family of circle is **Family of straight lines**.
- 16. The differential equation of $\frac{dx}{dy}$ +px=Q x^n . where P & Q are functions 'y' can be reduced to the linear form by the substation. $x^{1-n} = z$.
- 17. The G.S of $\frac{dy}{dx}$ +py=Q where P & Q are function of 'x' is given by $y(If) = \int Q(If) dx + c$.
- 18. An Integrating factor of Mdx + Ndy=0 where M=yf₁(x,y), N=yf₂(x,y), is $\frac{1}{Mx-Ny}$.
- 19. The General solution of the equation $p^2 7p + 12 = 0$. where $p = \frac{dy}{dx}$ is **(y-4x-c)(y-3x-c)=0**.
- 20. If Mdx+Ndy=0 is not exact and $\frac{1}{N} \left(\frac{\partial m}{\partial y} \frac{\partial N}{\partial x} \right) = f(x)$ then the integration factor of Mdx+ Ndy=0 is $e^{\int f(x)dx}$.

III. Write the Descriptive Question.

- 1. Solve $\frac{xdy}{dx} + 2y = x^2 \log x$.
- 2. Solve $(1+e^{x}/v)dx + e^{x}/v (1-x/y) dy = 0$
- 3. Solve $(x^2 + y^2) dx 2xy dy = 0$
- 4. Solve $y+px = p^2x^4$
- 5. Solve $y^2 \log y = xpy + p^2$