TELANGANA STATE COUNCIL OF HIGHER EDUCATION FACULTY OF SCIENCE

B.Se. (Computer Science)

CBCS Pattern with Effect from the Academic Year 2025-26

Structure of Curriculum

Course Title		s/Week	Credits			
Canalia Cini	Theory	Theory Practical		Practical	Total	
Semester-1	1		,			
Programming in C	4	2	4		5	
Semester-11			,		-	
Data Structures using C	4	2	4	<u> </u>	5	
Semester-111		,	4		-	
Database Management Systems	4	4 2		1	5	
Semester-IV					-	
Programming in Java	4	2	4		5	
Semester-V	Service Co.				5	
Python Programming	4	2	4		-3	
Semester-VI-ELECTIVE						
(A) Web Technologies	4	2	4	! -	5	
(B) Computer Networks	4	2	4	 	5	
(C) Data Science with Python	4	2	4	1	1 3	
SEC-I SEMESTER-I				-	2	
Digital Documentation and Analysis	2		2	-	2	
Power BI	2		2		1 -	
SEC-II SEMESTER-I					2	
Artificial Intelligence	2		2		2	
Software Engineering	2		2		+	
SEC-III SEMESTER-V					+	
Cyber Security	2		2	- -	2	
Died Chain Technology	2		2	-	 _2	
Generic Elective (other than comp	uter scien	ce student	s)			
SEMESTER-V Emerging Trends in Computer	4		4	-	4	
Science	<u> </u>	1			-	

Chairman Board of Studies Department of Comprise Science

Telangana University

COURSE STRUCTURE

B.Sc COMPUTER SCIENCE

Syllabus and Credits Structure under Choice Based Credit System [CBCS] General Degree for the Three Years B.Sc. with Computer Science Undergraduate Programme with effect from 2025-26

O _S		Paper Title	Teaching Hours/		Credits	Examination Scheme Max. Marks				
M E S T E	Type of Course		T H E O R Y	Week P R A C TI C A L	T O T A L	Theory/ Practical	IA	EE	Total	Durati on of Exam (Hrs)
	DSC-1	Programming in C	4		4	4	40	60	100	3
	DSC-1 Lab	Programming in C Lab		2	2	1		50	50	2
O II	DSC-2	Data Structures using C	4		4	4	40	60	100	3
	DSC-2 Lab	Data Structures using C Lab		2	2	1		50	50	2
	DSC-3	Database Management Systems	4		4	4	40	60	100	3
	DSC-3 Lab	Database Management Systems Lab		2	2	1		50	50	2
	SEC-1	(a)Digital Documentation and Analysis (b) POWER BI	2		2	2	15	35	50	2
0,,,	DSC-4	Programming in JAVA	4		4	4	40	60	100	3
	DSC-4 Lab	Programming in JAVA Lab		2	2	1		50	50	2
IV	SEC-2	(a)Artificial Intelligence (b) Softwar Engineering	2		2	2	15	35	50	2
•	DSC-5	Python Programming	4		4	4	40	60	100	3
	DSC-5 Lab	Python Programming Lab		2	2	1		50	50	2
o _v	SEC-3	a) Cyber Security b) Block Chain Technology c) LibreOffice Lab	2		2	2	15	35	50	2
	Generic Elective	Emerging Trends in Computer Science	4		4	4	40	60	100	3
VI	DSE-1	a) Web Technologiesb) Computer Networksc) Data Science with Python	4		4	4	40	60	100	3
	DSE-1 Lab			2	2	1		50	50	2
	2222	Total	34	12	46	40		50	30	2

1 Sang

Chairman
Board of Studies
Department of Comp. Sei

Telangana University

O. O. L. B.

FACULTY OF SCIENCE B.Sc. (Computer Science)

SEMESTER - I Programming in C

(w.c.f. 2025-2026)

Theory: 4 Hours/Week

Credits: 4

Internal Marks =40

External Marks =60

Course Objectives:

Cob1: To introduce the basics of programming languages, focusing on the C programming language, and explore different ways of writing and designing algorithms.

Cob2: To understand the key concepts such as variables, data types, operators, control structures, arrays and strings.

Cob3: To emphasize problem-solving techniques using functions and pointers.

Cob4: To learn the concept of user-defined data types and files.

Course Outcomes:

CO1: Understand program structure and design algorithm.

CO2: Develop basic programs by applying concepts such as control structures, arrays and strings.

CO3: Implement functions, pointers and Dynamic Memory Allocation (DMA).

CO4: Create user-defined data types and implement file operations.

Unit I

Computer Fundamentals Introduction of Computers, classification of computers, Memory Hierarchy, Introduction to OS.

Programming Fundamentals: Algorithms and Flow charts, Generation and classification of programming languages, Processes involved in program execution: compilation, interpretation, loading and linking.

Basics of C Programming: Introduction to C programming language, Structure of a C program, C tokens, data types, variables, constants, operators, expression evaluation (precedence, associativity), type conversions in C.

Unit II

Input and Output: Non-formatted and formatted input/output functions, Escape sequences and their usage in I/O. Control Statements - Sequence statements, Selection statements: if, if-else, nested if, switch, conditional operators, Iterative statements: while, do-while and for. Special control statements: goto, break, continue, return, exit.

Arrays and Strings: One-dimensional arrays, Multidimensional arrays and character arrays.

Unit III

Functions: Function definition, declaration and calling mechanisms, types of functions, ctype functions and string functions, call-by-value, call-by-reference. Passing arrays to functions, recursion, inline functions. Scope and lifetime of variables, storage classes.

Pointers: Introduction, address-of operator (&). Uses of pointers, Pointer types: pointers and arrays, pointers and strings, pointer to pointer, array of pointers. Dynamic memory allocation, malloc, calloc and free.

IInit IV

User-Defined Data Types: Structures and unions: Definition, initialization, accessing members, arrays of structures, structures vs. unions, enumeration types (enum).

H.O.D.

Dept. of Couperer Science

SSR DEGREE COLLEGE

1

Chairman

Chairman Board of Studies

Department of Coup. Se Telangana University

day

File handling: Introduction, file operations, file functions: open, close, read and write. Working with text and binary files.

Suggested Books

- 1 Reema Thareja, 'Programming in C', Oxford University Press, Second Edition, 2016.
- 2 Kernighan, B.W and Ritchie, D.M, 'The C Programming language', Second Edition, Pearson Education, 2015.

Reference Books

- 1 Ivor Horton, Beginning C
- 2 Ashok Kamthane, Programming in C
- 3 Herbert Schildt, The Complete Reference C
- 4 Paul Deitel, Harvey Deitel, C How to Program
- 5 R.S.Bichkar, "Programming with C" University Press, 2024.
- 6 Byron S. Gottfried, Theory and Problems of Programming with C
- 7 Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language
- 8 B. A. Forouzan, R. F. Gilberg, A Structured Programming Approach Using C

H.O.D

SSR DEGREE COLLEGE NIZAMABAD.

Chairman

Board of Studies

Department of Computer Science

Telangana University

All aux

FACULTY OF SCIENCE

B.Sc. (Computer Science)

SEMESTER - I

Programming in C Lab

(w.c.f. 2025-2026)

Practical: 2 Hours/Week

Credits: 1

Marks: 50

Recommended Software: GCC on Linux, DevC++ or Code Blocks on Windows 10.

External Examination Requirements: Students need to demonstrate the execution of two programs in the external lab exam.

Course Objectives:

Cob1: Develop fundamental programming skills in C by implementing conditional statements, loops, functions, and data structures for problem-solving.

Cob2: Apply key C programming concepts such as arrays, pointers, strings, file handling, and recursion to build efficient algorithms for real-world applications. Course Outcomes:

CO1: Demonstrate the ability to write, debug, and execute C programs for solving mathematical and logical problems using control structures, functions, and data structures.

CO2: Apply fundamental C programming concepts, including file handling, recursion, and memory management, to develop efficient solutions for computational tasks.

Lab Experiments:

- 1. Write a C program to input numbers and find the largest of two or three numbers using if statements and the conditional (ternary) operator (?:). Display the largest number.
- 2. Write a C program that takes an integer input and outputs the reversed number.
- 3. Write a C program to print all prime numbers between 2 and a given number n.
- 4. Write a C program to find the roots of a quadratic equation ax2+bx+c=0.
- 5. Write a C program to print a triangle pattern of stars (*), where the number of lines is given by the user.
- 6. Write a C program to find the largest and smallest elements in an array of n numbers.
- 7. Write a C program to multiply two matrices of 3x3.
- 8. Write a C program to find the Greatest Common Divisor (GCD) of two numbers using both iteration and recursion.
- 9. Write a C program to demonstrate the use of different storage classes (auto, register, static, extern).
- 10. Write a C program to demonstrate the concepts of call-by-value and call-by-reference.
- 11. Write a C program that takes a string from the command-line arguments and counts the occurrence of each alphabet letter in the string.
- 12. Write a C program to demonstrate the usage of the enum data type.
- 13. Write a C program that demonstrates various string functions from the <string.h> library.
- 14. Write a C program that demonstrates structures and unions.
- 15. Write a C program that opens a file and counts the total number of characters in it.
- 16. Write a C program that copies content from an existing text file to a new file.

3

NIZAMARA Board of Studies

Department of Computer Science

Telangana University

FACULTY OF SCIENCE

B.Sc. (Computer Science)

SEMESTER - II

Data Structures Using C

(w.e.f. 2025-2026)

Theory: 4 Hours/Week

Internal Marks =40

Credits: 4

External Marks = 60

Course Objectives:

Cob1:To discuss the linear data structures and their applications.

Cob2: To Understand Queues, Linked list and Hashing Concepts .

Cob3: To understand and implement trees and graphs with efficient traversal, searching, and optimization techniques.

Cob4: Analyze and implement advanced searching and sorting techniques, including hashing and overflow handling, to optimize data organization and retrieval.

Course Outcomes:

CO1: Understand and implement fundamental data structures, including arrays and stacks, for efficient data manipulation and expression evaluation.

CO2: Apply linked lists, queues, and hashing techniques to optimize data storage, retrieval, and processing.

CO3: Analyze and implement tree and graph structures, including traversal techniques and efficient searching strategies.

CO4: Develop and optimize searching and sorting algorithms to enhance data organization and retrieval efficiency.

UNIT I

Introduction to Data structures: Definition, Types of Data structures.

Arrays: Arrays - ADT, ordered lists, Sparse matrices, representation of arrays.

Stacks: Stack ADT, Stacks using Arrays, Stacks using dynamic arrays, Evaluation of Expressions – Evaluating Postfix Expression, Infix to Postfix expression, checking well-formed parenthesis, reversing a string.

UNIT II

Queues: Queues ADT, operations, Circular Queues, Applications.

Linked Lists: Singly Linked Lists and Chains, Linked Stacks and Queues, Polynomials, Operations for circularly linked lists, Equivalence Classes, Doubly Linked Lists. Hashing: Static Hashing, Hash Tables, Hash Functions, Overflow Handling, Theoretical Evaluation of Overflow Techniques.

UNIT III

Trees: Introduction, Binary Trees, Binary Tree Traversals, Heaps, Binary Search trees (BST): Definition, Searching an element, Insertion into a BST, and Deletion from a BST, Efficient Binary Search Trees. AVL Trees: Definition, Insert, search and delete operations.

Graphs: Graph Abstract Data Type, Elementary Graph operations, Graph Traversal Techniques - DFS and BFS, Minimum Cost Spanning Trees - Prim's and Kruskal's Algorithms.

UNIT IV

4

ept. of Confidence SC

Board of StunizaMABAD.

Department of Computer

Telangana University

Dany

4

Searching and Sorting: Sequential search, Binary search, Hash Tables: Hashing Functions, Types of handling techniques, Bubble sort, Selection sort, Insertion sort, Quick sort, Merge sort, Heap sort,

Suggested Book

Horowitz E, Sahni S and Susan Anderson-Freed, Fundamentals of Data structures in C, 2nd Edition (2008), Universities Press.

Reference Books

- 1. Mark A Weiss, Data Structures and Algorithm Analysis In C, Second Edition (2002), Pearson
- Kushwaha D. S and Misra A.K, Data structures A Programming Approach with C, Second Edition (2014), PHI.
- ilberg R. F and Forouzan B. A, Data structures: A Pseudocode Approach with C, Second Edition (2007), Cengage Learning
- Tanenbaum A. M., Langsam Y. Augenstein M. J., Data Structures using C, Second Edition (2008), Pearson.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, Introduction to Algorithms, Third Edition (2009). MIT Press
- Chandan Bancrice and Atanu Das, "Data Structures and Algorithms in C and PYTHON", University Press, 2023.
- YedidyahLangsam, Moshe J. Augenstein, Aaron M. Tenenbaum, Data Structures Using C and C++, Second Edition (2009), PHI

mle I

Dept. of Computer Clean
SSR DEGREE COLLEGE
NIZAMABAD.

Board of Studies
Department of Computers Compu

Telangana University

5

FACULTY OF SCIENCE

B.Sc. (Computer Science)

SEMESTER - II

Data Structures Using C Lab

(w.e.f. 2025-2026)

Practical: 2 Hours/Week

Credits: 1

Marks: 50

Course Objectives:

Cob1: Develop and implement various data structures such as arrays, linked lists, stacks, queues, trees, and graphs for efficient data manipulation.

Cob2: Apply sorting, searching, and hashing techniques to solve computational problems effectively.

Course Outcomes:

CO1: Implement fundamental and advanced data structures, including arrays, linked lists, stacks, queues, trees, and graphs.

CO2: Apply efficient searching, sorting, and hashing techniques to solve computational problems.

Lab Experiments (Using C programming Language):

- 1. Implementation of Stacks and Queues using Arrays.
- 2. Implementation of Circular Queue.
- 3. Implementation of Infix to Postfix Conversion, Postfix Expression Evaluation.
- 4. Implementation of Singly Linked List
- 5. Implementation of Doubly Linked List.
- 6. Implementation of Circular Linked List.
- 7. Implementation of Stacks using Linked Lists
- 8. Implementation of Queues using Linked Lists.
- 9. Implementation of Linear search and Binary Search.
- 10. Implementation of Operations on Binary Tree
- 11. Implementation of Binary Search Tree.
- 12. Implementation of Traversal on Graphs.
- 13. Implementation of Selection, Bubble and Insertion Sort.
- 14. Implementation of Merge Sort.
- 15. Implementation of Quick Sort.

Jule

H.O.D

DEGREE COLLEGE

SSR DEGREE COL

Board of Studies

Department of Computer Science

Telangana University

6