TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) VI SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS STATISTICS (OPERATIONAL RESEARCH) QUESTION BANK

I. Multiple choice questions.							
1. Every loop has an		number of cells.			[]	
a. Even	b. Odd	c. Both (a & b)	d. Non	e			
2. Any loop should ha	ave at least	cells.			[]	
a. 5	b. 4	c. 3	d. 2				
3. Any loop should st	art and end at	cell			[]	
a. Occupied	b. Basic	c. Non-Basic	d. Non	e			
4. Unbalanced transportation problem means					[]	
$a. \sum_{i=1}^n ai = \sum_{j=1}^n aj$	b. $\sum_{i=1}^{n} aiaj$	$c. \sum_{i=1}^{n} ai = \sum_{j=1}^{m} bj$	$d. \; \sum_{i=1}^n a_i$	$ai.\sum_{j=1}^{m}bj$			
5. If there are less tha	an m+n-1 basic cells, it	is			[]	
a. Degeneracy	b. Non-degeneracy	c. Optimal		d. None			
6. Determine ui and vj values by using the relation					[]	
a. $ui - vj = cij$	b. $ui + vj = cij$	c. $ui = vj$		d. None			
7. In the transshipment problem, in IBFS we omit					[]	
a. Vertical cell	b. Horizontal cell	c. Diagonal ce	ell	d. None			
8. In assignment problem, we use method				[]		
a. Fisher	b. Gussets	c. χ^2 – test		d. Hungarian			
9. In Hungarian method of solving an assignment problem requires the no. of rows and							
columns are					[]	
a. Equal	b. Not equal	c. Less than		d. None			
10. In travelling salesman problem, he will different possible ways of visits.			ways of visits.	[]		
a. n!	b. (n-1)!	c. (n+1)!		d. None			

II. Fill in the blanks.
1. In a sequencing problem, there are possible sequences.
2. In a sequencing problem, tij =
3. In a sequencing problem, xij =
4. In a sequencing problem, T =
5. The optimum sequence for "n" jobs & two machines method was developed by
6. In degeneracy problem in TPP, we should assign a small positive quantity
7. Balanced assignment problem means matrix.
8. In unbalanced assignment problem we should add a dummy row or column with the cost
9. In maximization assignment problem can be converted into problem.
10. Subtract each element from large element in maximize assignment problem, the obtained matrix
called
III. Answer the following questions.
1. Define transshipment problem?
2. Define assignment problem?
3. Define travelling salesman problem?
4. Define processing time ?
5. Define Idle time on a machine ?