TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) II SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS CHEMISTRY QUESTION BANK

I. Choose the correct Answer 1.Units for Molarity	S.			[a]
a) Moles/lit	b) molar	c) Molex ×lit	d) a & b	
2. At which temperature water + Trietly\ amine mixes to form completcly miscible liquids				[a]
a) 19.5°c	b) 18.5°c	c) 17.5°c	d) 16.5 °c	
3. No. of Rectangular planes	are			[a]
a) 6	b) 4	c) 3	d) 2	
4. How many hody centers our present in a cubic crystal				[d]
a) 4	b) 3	c) 2	d) 1	
5. Relaton between α , β , γ	in monocli	nic system		[b]
a) $\alpha \neq \beta \neq \gamma =$ 90°	b) $lpha=\gamma=$ 90°, eta	$eta eq 90^\circ$ c) $lpha = eta =$	γ =90° d) None	
6. No.of moles of solvent (A)			[c]
a) $\frac{weight of solute}{molculacweight of solute}$		b) <i>molcule</i>	arweight of solute	
motentaenetghiojsotti	le	we	rightofsolvte	
c) $\frac{weight of solvent}{molcular weight of solver}$	nt	d) <u>molcula</u> we	arweightofsolvte arweightofsolute rightofsolvte	
 c) weightofsolvent molcularweightofsolver 7. Lowering vapour procures 	$\frac{1}{nt}$ (Δ_p) =	we d) <u>molcula</u> we	arweightofsolvte arweightofsolute rightofsolvte	[a]
 c) weightofsolvent molcularweightofsolver 7. Lowering vapour procures a) p_o-p_s 	$\frac{1}{nt}$ $(\Delta_{p}) =$ $b) p_{s} - p_{o}$	d) <u>molcula</u> d) <u>molcula</u> we	arweightofsolute vightofsolvte d) p _s +p _o	[a]
 c) weightofsolvent molcularweightofsolven 7. Lowering vapour procures a) p_o-p_s 8. Identify Raoults law 	$\frac{dt}{d_p} = b p_s - p_o$	d) <u>molcula</u> d) <u>c) p_o +p_s</u>	arweightofsolute arweightofsolute rightofsolvte d) p _s +p _o	[a] [c]
c) $\frac{weight of solvent}{molcular weight of solvent}$ 7. Lowering vapour procures a) p _o -p _s 8. Identify Raoults law a) $\frac{P_0 - P_s}{P_0} = n_A$	$\frac{dt}{dt}$ $(\Delta_{p}) =$ $b) p_{s} - p_{o}$ $b) \frac{P_{0} - P_{s}}{P_{0}} = X \beta$	we d) $\frac{molcula}{we}$ c) $p_0 + p_s$ c) $\frac{P_0 - P_s}{P_0} = X_p$	arweightofsolvte arweightofsolute hightofsolvte d) $p_s + p_o$ d) $\frac{P_0 - P_s}{P_0} = n_A$	[a] [c]
c) $\frac{weight of solvent}{molcular weight of solvent}$ 7. Lowering vapour procures a) p _o -p _s 8. Identify Raoults law a) $\frac{P_0 - P_s}{P_0} = n_A$ 9. Identify Vant Hoff Gelusad	$\frac{1}{nt}$ $(\Delta_{p}) =$ $b) p_{s}-p_{o}$ $b) \frac{P_{0}-P_{s}}{P_{0}} = X\beta$ $c law$	we d) $\frac{molcula}{we}$ c) $p_0 + p_s$ c) $\frac{P_0 - P_s}{P_0} = X_P$	$\frac{arweight of solvte}{arweight of solvte}$ $d) p_{s} + p_{o}$ $d) \frac{P_{0} - P_{s}}{P_{0}} = n_{A}$	[a] [c]
c) $\frac{weight of solvent}{molcular weight of solvent}$ 7. Lowering vapour procures a) $p_o - p_s$ 8. Identify Raoults law a) $\frac{P_o - P_s}{P_o} = n_A$ 9. Identify Vant Hoff Gelusad a) $\pi \propto T$	the at $(\Delta_p) =$ b) $p_s - p_o$ b) $\frac{P_0 - P_s}{P_0} = X \beta$ c law b) $\pi \propto P$	we d) $\frac{molcula}{we}$ c) $p_0 + p_s$ c) $\frac{P_0 - P_s}{P_0} = X_P$ c) $\pi \propto \frac{1}{v}$	eightofsolvte arweightofsolute d) $p_s + p_o$ d) $\frac{P_0 - P_s}{P_0} = n_A$ d) $\pi \propto n_B$	[a] [c] [c]
c) $\frac{weight of solvent}{molcular weight of solvent}$ 7. Lowering vapour procures a) p _o -p _s 8. Identify Raoults law a) $\frac{P_0 - P_s}{P_0} = n_A$ 9. Identify Vant Hoff Gelusad a) $\pi \propto T$ 10. Range of phenaptnalene	int int $(\Delta_{p}) =$ $b) p_{s}-p_{o}$ $b) \frac{P_{0}-P_{s}}{P_{0}} = X\beta$ indicator is	we d) $\frac{molcula}{we}$ c) $p_0 + p_s$ c) $\frac{P_0 - P_s}{P_0} = X_P$ c) $\pi \propto \frac{1}{v}$	$\frac{arweight of solvte}{arweight of solvte}$ $d) p_{s} + p_{o}$ $d) \frac{P_{0} - P_{s}}{P_{0}} = n_{A}$ $d) \pi \propto n_{B}$	[a] [c] [c]

- II. Fill in the blanks
- 1. Mole fraction of solvent $X_1 = \frac{n_1}{n_1 + n_2}$

2. According to Raoults & ΔH value for solutions having positive deviation $\Delta H = 0$

3. Brags' & equations $n\lambda = 2d\sin\theta$

- 4. To explain symmetry of lattice $\underline{3}$ symmetry elements & are used.
- 5. <u>Egg laver</u> is used as semipermiable memprane.
- 6. Degree of Association (α) = _____
- 7. EDTA means Ethylene diamine tetramethyl acetate
- 8. The no. of Bravals lattices in triclinic 14
- 9. In acidic medium methyl/orage exhibit ______ structure.
- 10. What is EBT Erichrome black-T
- 11. S = 0.821 lit-atm/mole/dy
- 12. Molefraction of solute $X_2 = \frac{n_2}{n_1 + n_2}$
- 13. No. of chiral center's in tartaric acid $\underline{2}$
- 14. When the molecule is unsymmetrical no. of d & l isomers = 2^{n}
- 15. When the molecule is symmetrical No. of d & l isomers = 2^{n-1}

16. Formula of Glyceraldehyde

17. Example tetra-4 symetric molecule

- 18. Example for disymetic molecule
- 19. For dissymmetric molecule n > 1
- 20. Cn = <u>360⁰/n</u>
- 21. 1 ml 0.1 m EDTA = <u>5.871 gmNi</u>
- 22. AgCl ppt is dried at = $130^{\circ} \text{ C} 150^{\circ} \text{ C}$
- 23. BaSO₄ ppt is dried at = $800^{\circ}C 900^{\circ}C$
- 24. Mg ppt is dried at = $1000^{\circ}C 1100^{\circ}C$

25. Structure of EDTA

- 26. Example for weak acid & weak base CH₃COOH & NH₄OH
- 27. Methyl orange range is 3.1 4.4
- 28. Methyl red range is <u>4.2 6.3</u>
- 29. AgNO₃ + KCl → AgCl + KNO₃

30. ∆G = <u>-nFt</u>

III. Short Answers.1. What is Raoult's Law ?

A:
$$\frac{P^0 - P}{P^0} = X_2$$

2. Define normality?

A:
$$N = \frac{\omega}{g \in \omega} \times \frac{1}{v(l,t)}$$

3. Write the sturecture of kcl lattice?

A:

- 4. What is Indicator?
- A: The substance which is used to determine end point in the titration without any error.
- 5. What is post precipitation?
- A: Surface of the first precipitate after its formation.
- 6. What is neutralization?
- A: Determination of concentration of an acid with base is called neutralization.
- 7. What is end point?
- A: The print at which the titration process is completed is called end point.
- 8. Write the structure of tartaric acid?

- A:
- 9. Write osmotic pressure equation?

A: $\pi v = nsT$

10. Write equation for elevation in boiling point?

A: $\Delta Tb = Kb.\frac{\omega}{m\omega}$