Faculty of Science

B.Sc (Mathematics) III-Year, CBCS -VI Semester
 Regular Examinations -June/July, 2022
 PAPER: Analytical Solid Geometry

Time: 3 Hours
Max Marks: 80

Section-A

I. Answer any eight of the following questions ($8 \times 4=32$ Marks)

1. Find the value of K for which the plane $x+y+z=K \sqrt{3}$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0$.
2. Find the Centre and radius of the circle $x^{2}+y^{2}+z^{2}=25,2 x+y+2 z=9$
3. If the radius of the sphere $x^{2}+y^{2}+z^{2}+6 x-8 y-t=0$ is 6 then find t.
4. Find the enveloping cone of the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y=0$ with vertex at $(1,1,1)$.
5. Find the equation of the cone with vertex $(1,1,0)$ and guiding curve $x^{2}+y^{2}=4$, $z=0$.
6. Find the equation to the cone which passes through the three coordinate axes and the lines $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and $\frac{x}{3}=\frac{y}{-1}=\frac{z}{1}$.
7. Find the equation to the right circular cylinder whose guiding circle is $x^{2}+y^{2}+z^{2}=25, x-y+z=3$.
8. Find the equation of the cylinder whose generators are parallel to $\frac{x}{1}=\frac{y}{2}=\frac{x}{-1}$ and passing through the curve $3 x^{2}+2 y^{2}=1, z=0$.
9. Define right circular cone and cylinder.
10. Find the equations of tangent planes to $7 x^{2}-3 y^{2}-z^{2}+21=0$ which passes through the line $7 x-6 y+9=0, z=3$.
11. The plane $l x+m y+n z=p$ touch the conicoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ then show that $a^{2} l^{2}+b^{2} m^{2}-c^{2} n^{2}=p^{2}$
12. Show that $3 x^{2}+4 y^{2}+z^{2}-x+12 y-4 z+13=0$ is an ellipse and find its Centre.

Section-B

II. Answer the following

$$
(4 \times 12=48 \text { Marks })
$$

13. (a) Find the equation of the sphere through the points $(0,-2,-4),(2,-1,-1)$ and whose Centre lies on the line $2 x-3 y=0=5 y+2 z$.
(b) Show that the spheres

$$
x^{2}+y^{2}+z^{2}=25, x^{2}+y^{2}+z^{2}-24 x-40 y-18 z=-225
$$

touch externally. Find the point of contact.
14. (a) Show that the equation $2 y^{2}-8 y z-4 z x-8 x y+6 x-4 y-2 z+5=0$ represents a cone with vertex $(-7 / 6,1 / 3,5 / 6)$.
(OR)
(b) Show that the plane $a x+b y+c z=0$ cuts the cone $y z+z x+x y=0$ in

Perpendicular lines if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
15. (a) Find the equation of the enveloping cylinder of the sphere $x^{2}+y^{2}+z^{2}-2 x$ $+4 y-1=0$ having its generators parallel to the line $x=y=z$.
(OR)
(b) Find the equation to the right circular cylinder whose axis is $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}$ and radius 2 .
16. (a) Find the locus of the points from which three mutually perpendicular tangent lines can be drawn to the conicoid $a x^{2}+b y^{2}+c z^{2}=1$
(OR)
(b) A point P moves so that the section of enveloping cone of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ with P as vertex by XY plane is a circle. Show that P lies on One of the conics $\frac{y^{2}}{b^{2}-a^{2}}+\frac{a^{2}}{c^{2}}=1, x=0$ (or) $\frac{x^{2}}{a^{2}-b^{2}}+\frac{a^{2}}{c^{2}}=1, y=0$

Faculty of Science

B.Sc(Mathematics) III-Year, CBCS -VI Semester Backlog Examinations -Jan, 2023
 PAPER: Analytical Solid Geometry

Time: 3 Hours
Max Marks: 80

Section-A

I. Answer any eight of the following questions

$$
\text { (} 8 \times 4=32 \text { Marks) }
$$

1. Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+5=0$.
2. Find the pole of the plane $x-y+5 z-3=0$ with respect to the sphere $x^{2}+y^{2}+z^{2}=9$.
3. Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=0,2 x+3 y+4 z=5$ and the point $(1,2,3)$.
4. Find the equation of the cone whose vertex is ($1,1,0$) and guiding curve is $x^{2}+z^{2}=4, y=0$.
5. Find the equation of the cone which passes through the three coordinate axis and the lines $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}, \frac{x}{3}=\frac{y}{-1}=\frac{z}{1}$.
6. Find the intersecting points of the cone $4 x^{2}-y^{2}+z^{2}=0$ and the line $\frac{x-1}{1}=\frac{y-2}{3}=\frac{z-1}{2}$.
7. Find the equation to the cylinder whose generators are parallel to $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and guiding curve is $x^{2}+y^{2}=1, z=1$.
8. Find the right circular cylinder of radius 1 and axis is the line $\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}$
9. Find the equation of the cylinder with generators parallel to Z -axis and passing through the curve $a x^{2}+b y^{2}=2 z, l x+m y+n z=p$.
10.Find the intersecting points of the line $\frac{x+5}{-3}=\frac{y-4}{1}=\frac{z-11}{7}$ with the conicoid $12 x^{2}-17 y^{2}+7 z^{2}=7$.
11.Find the equations to the tangent planes to $7 x^{2}-3 y^{2}-z^{2}+21=0$ which passes through the line $7 x-6 y+9=0, z=3$.
10. Show that the plane $3 x+12 y-6 z-17=0$ touches the conicoid $3 x^{2}-6 y^{2}+9 z^{2}+17=0$ and find their point of contact.

Section-B

II. Answer the following questions
13.(a) Find the equation of the sphere through the four points $(4,-1,2),(0,-2,3),(1,-5,-1)$ and $(2,0,1)$.

> (OR)
(b) Find the limiting points of the co-axal system defined by the spheres $x^{2}+y^{2}+z^{2}+3 x-3 y+6=0, x^{2}+y^{2}+z^{2}-6 y-6 z+6=0$.
14.(a) Show that the general equation of the cone which touches the three co-ordinate planes is $\sqrt{f x} \pm \sqrt{g y} \pm \sqrt{h z}=0$.
(b) Prove that the equation $x^{2}-2 y^{2}+3 z^{2}-4 x y+5 y z-6 z x+8 x-19 y-2 z-20=0$ represents a cone and find its vertex.
15.(a) Find the equation of a right circular cone whose vertex is ($1,1,1$), axis is $\frac{x-1}{-1}=\frac{y-1}{2}=\frac{z-1}{3}$ and semi vertical angle is 30°.
(b) Find the equation to the right circular cylinder of radius 2 , whose axis is the line $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z-3}{6}$.
16. (a) Find the equations to the tangent planes to the surface $4 x^{2}-5 y^{2}+7 z^{2}+13=0$ parallel to the plane $4 x+20 y-21 z=0$ find their point of contact also.
(b) Find the locus of the perpendiculars from the origin to the tangent planes to the surface $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ which cut off from its axes intercepts. The sum of whose reciprocals is equal to the constant $1 / k$.

B.Sc(Mathematics)III-Year, CBCS-VI Semester Regular Examinations -June, 2023
 PAPER: Analytical Solid Geometry

Time: 3 Hours

Section-A

I. Answer any eight of the following questions

Max Marks: 80

$$
\text { (} 8 \times 4=32 \text { Marks) }
$$

1. Find the centre and radius of the sphere

$$
2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y+2 z+3=0
$$

2. Find the tangent plane to the sphere $x^{2}+y^{2}+z^{2}-6 x+2 z+1=0$ at the point $(2,-2,1)$.
3. Find the equation of the sphere whose end points of the diameter are $(2,3,-1)$ and $(1,-2,-1)$.
4. Find the equation of the cone whose vertex is the origin and guiding curve is $x^{2}+y^{2}=4, z=2$.
5. Find the intersecting points of the cone $11 x^{2}-5 y^{2}+z^{2}=0$ and the line $\frac{x+1}{-1}=\frac{y-12}{5}=\frac{z-7}{2}$.
6. Find the equation of the cone which passes through the three coordinate axes and the lines $\frac{x}{1}=\frac{y}{-3}=\frac{z}{3}, \frac{x}{1}=\frac{y}{-1}=\frac{z}{-1}$
7. Find the equation of the cylinder whose generators are parallel to $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and the guiding curve is $x^{2}+y^{2}=16, z=0$.
8. Find the right circular cylinder of radius 2 and axis is the line $\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}$
9. Find the equation of the cylinder with generators parallel to Z -axis and passing through the curve $a x^{2}+b y^{2}=2 z, l x+m y+n z=p$.
10.Find the points of intersection of the line $\frac{x+5}{-3}=\frac{y-4}{1}=\frac{z-11}{7}$ with the conicoid $12 x^{2}-17 y^{2}+7 z^{2}=7$.
11.Find the equations to the tangent planes to $7 x^{2}-3 y^{2}-z^{2}+21=0$ which passes through the line $7 x-6 y+9=0, z=3$.
10. Find the tangent planes to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ which are parallel to the plane $l x+m y+n z=0$.

Section-B

II. Answer the following questions
($4 \times 12=48$ Marks)
13.(a) Show that the points $(5,0,2),(2,-6,0),(7,-3,8),(4,-8,6)$ are concytlic.
(OR)
(b)Show that the spheres $x^{2}+y^{2}+z^{2}=25, x^{2}+y^{2}+z^{2}-24 x-40 y-18 z+225=0$ touch externally and find the point of contact.
14.(a) Prove that the equation $4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 x-11 y+6 z+4=0$ represents a cone whose vertex is $(-1,-2,-3)$.
(OR)
(b) Prove that the cones $x^{2}-y^{2}+2 z^{2}-3 y z+4 z x-5 x y=0$ and $17 x^{2}+8 y^{2}+29 z^{2}+28 y z-46 z x-16 x y=0$ are reciprocal.
15.(a) Find the equation of the right circular cone which passes through the point $(1,1,2)$ and has vertex at the origin and axis is the line $\frac{x}{2}=\frac{-y}{4}=\frac{z}{3}$.
(OR)
(b) Find the equation of the right circular cylinder of radius 2 , whose axis is the line $\frac{x-1}{2}=y-2=\frac{z-3}{2}$.
16.(a) Find the equations to the tangent planes to the surface $4 x^{2}-5 y^{2}+7 z^{2}+13=0$ parallel to the plane $4 x+20 y-21 z=0$ find their point of contact also.
(b) If the section of the enveloping cone of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ whose vertex is P by the plane $z_{=0}$ is a rectangular hyperbola. Show that the locus of P is

$$
\frac{x^{2}+y^{2}}{a^{2}+b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

