Faculty of Science

B.Sc (Mathematics) II-Year, CBCS -IV Semester

Regular Examinations - June / July, 2022

PAPER: Algebra

Time: 3 Hours Max Marks: 80

Section - A

I. Answer any *eight* of the following questions. $(8\times4=32 \text{ Marks})$

- 1. Prove that $(ab)^2 = a^2b^2$ in a group G if ab = ba for all $a, b \in G$
- 2. Prove that center of a group G is a subgroup of G.
- 3. Find the inverse of the element $\begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix}$ in $GL(2, z_{11})$ with respect to matrix multiplication.
- 4. Prove that a group of prime order is cyclic.
- 5. Determine whether the following is even or odd a = (12)(134)(152)
- 6. Write the permutation (12)(13)(23)(142) as a product of disjoint cycles.
- 7. Find all units of Z_{14} .
- 8. Prove that the intersection of subring of a ring R is a subring of R.
- 9. Every quotient group of an abelian group is abelian.
- 10. Show that the correspondence $x \to 5x$ from Z_5 to Z_{10} does not preserve addition.
- 11. Define prime ideal and maximal ideal with examples.
- 12. If $Z_6 = \{0,1,2,3,4,5\}$, $A = \{0,3\}$ then find all the elements of factor ring Z_6/A

Section-B

II. Answer all the questions.

 $(4\times12=48 \text{ Marks})$

13. (a) Prove that every subgroup of cyclic group is cyclic.

(OR)

- (b) Define group. Let $G = \{ \begin{bmatrix} a & a \\ a & a \end{bmatrix}$, a $\in \mathbb{R}$, a $\neq 0 \}$. Show that G is a group under matrix multiplication.
- 14. (a) State and Prove Lagrange theorem

(OR)

- (b) State and prove Orbit-Stabilizer theorem.
- 15. (a) What is the order of the element 14+ < 8 > in the factor group $\frac{z_{14}}{\langle 8 \rangle}$

(OR)

- (b) Find all the solutions of $x^2 x + 2 = 0$ over $Z_3[i]$.
- 16. (a) Define maximal ideal of a ring if R is a commutative ring with unity and M is a maximal ideal of R, Then prove that R/M is field.

(OR)

(b) Prove that if ϕ be a ring homomorphism from a ring R to a ring S then $\phi(A)$ is an ideal of S

Code: 4308/BL/19

Faculty of Science

B.Sc(Mathematics)II-Year, CBCS -IV Semester Backlog Examinations -Jan, 2023 PAPER: Algebra

Time: 3 Hours Max Marks: 80

Section - A

I. Answer any eight of the following questions.

 $(8\times4=32 Marks)$

- 1. For any two elements a, b in a group G, Prove that $(ab)^{-1} = b^{-1}a^{-1}$.
- 2. Find the inverse of the element $\begin{bmatrix} 4 & -4 \\ -4 & 3 \end{bmatrix}$ in SL(2, Z₅) with respect to matrix multiplication.
- 3. Prove that $H \cap K$ is a subgroup of G if H and K are subgroup of G.
- 4. Determine whether the following is even or odd permutation $a = (1\ 2)(1\ 3\ 4)(1\ 5\ 2)$.
- 5. Find the order of the permutation (531)(2468)(135)
- 6. Let H be any subgroup of G, and let $a, b \in G$ then prove that aH = H iff $a \in H$.
- 7. Prove that intersection of two normal subgroup is a normal subgroup.
- 8. Let R be a ring. The center of R is the set $S = \{x \in R: ax = xa, \forall a \in R\}$. Then show that S is a subring of R.
- 9. Find all units of Z_{14} .
- 10. Show that $\phi: C \to C$ given by $\phi(a+ib) = a-ib$ is a ring homomorphism.
- 11. Define prime ideal and maximal ideal with examples.
- 12. Let $f(x) = 4x^3 + 2x^2 + x + 3$, and $g(x) = 3x^4 + 3x^3 + 3x^2 + x + 4$ are two-polynomials in $Z_5[x]$. Compute f(x) + g(x) and $f(x) \cdot g(x)$.

Section - B

II. Answer the following questions.

 $(4\times12=48 \text{ Marks})$

13. (a) G is a group, a is an element in G with order n, k is a positive integer then show that $\langle a^k \rangle = \langle a^{gdc(n,k)} \rangle$, $|a^k| = n$

(OR)

- (b) If a be an element of a group G and let |a| = 15 then find all generators of G and also compute the orders of a^3 , a^6 , a^9 , a^{10} of G.
- 14. (a) State and Prove Lagrange's theorem.

(OR)

- (b) State and Prove Orbit-Stabilizer theorem.
- 15. (a) Let ϕ be a homomorphism from a group G to a group G. Then prove that $Ker \phi$ is a normal subgroup of G.

(OR)

- (b)Construct multiplication table for $Z_3[i]$.
- 16. (a) Let R be a commutative ring with unity and A be an ideal of R. Then prove that R/A is an integral domain if and only if A is a prime ideal of R. (OR)
 - (b) Prove that if ϕ be a ring homomorphism from a ring R to a ring S then $\phi(A)$ is an ideal of S.

Faculty of Science

B.Sc (Mathematics) II-Year, CBCS -IV Semester Regular Examinations -June, 2023

PAPER: ALGEBRA

Time: 3 Hours Max Marks: 80

Section – A

I. Answer any *eight* of the following questions (

 $(8\times4=32 \text{ Marks})$

Code: 4308/19/REG

1. Solve the followings

(a)
$${7 + x = 4 \text{ in } z_{10} \atop 10}$$
 (b) ${x + 7 = 11 \text{ in } z_{12} \atop 12}$

- 2. Prove that center of the group Z(G) is a subgroup of G
- 3. What are all the generators of Z_{25} ?
- 4. Compute all the cosets of 8Z in Z
- 5. Let $H = \{0, \pm 3, \pm 6, \pm 9, \dots\}$. Find all the left cosets of H in Z?
- 6. Determine whether the following is even or odd $\alpha = (1234)(3521)$
- 7. Prove that the centre of any group is a normal subgroup.
- 8. Find all units of $Z \times Z$, where Z is the ring of integers.zz
- 9. Prove that intersection of two normal subgroup is a normal subgroup.
- 10. If $Z_6 = \{0,1,2,3,4,5\}, A = \{0,3\}$ then find all the elements of factor ring Z_6/A
- 11. Define prime ideal and maximal ideal with examples.
- 12. Show that $\phi: \mathcal{C} \to \mathcal{C}$ given by $\phi(a+ib) = a-ib$ is a ring homomorphism.

Section - B

II. Answer all the questions.

 $(4\times12=48 Marks)$

13. (a) Prove if H a non-empty finite subset of a group G. If H is closed under the operation of G, then H is a subgroup of G.

(OR

- (b) If a be an element of a group G and let |a| = 15 then find all generators of G and also compute the orders of a^3, a^6, a^9, a^{10} of G.
- 14. (a) (i) State and Prove Lagrange's theorem.
 - (ii) Let G be a group of order 100. Find the number of subgroups of order 3 in G.

(OR)

- (b) State and Prove Orbit-Stabilizer theorem.
- 15. (a) Construct multiplication table for $Z_3[i]$.

(OR)

- (b) Determine all homomorphisms from Z_{12} to Z_{30}
- 16. (a) Prove that if ϕ be a ring homomorphism from a ring R to a ring S then $\phi(A)$ is an ideal of S.

(OR)

(b) Let R be a commutative ring with unity and A be an ideal of R. Then prove that R/A is an integral domain if and only if A is a prime ideal of R.
