TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) VI SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS MATHS (ANALYTICAL SOLID GEOMETRY) QUESTION BANK

 I. Multiple choice questions. 1. If right circular cone has three mutually perpendicular generators then semi-vertical angle is, 					
(a) $tan^{-1}\sqrt{2}$	(b) $tan^{-1}2$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$		
 If the vertex is the origin an (a) 1,0,0 	d axis of cone is alo (b) 0,1,0	ng z-axis then its direction (c) 0,0,1	cosines are (d) 1,1,0	[c]	
3. The equations of the circula (a) yz+zx+xy = 0	r cones which cont (b) yz-xz-xy = 0	ain the three co-ordinate a (c) yz \pm zx \pm xy	xes as generators is = 0 (d) None of th	[c] ese	
4. The locus of the lines drawn in a given direction or parallel to a given line so as to touch a given so is called					
(a) Cylinder (b) F	Right circular cylind	er (c) Enveloping cylind	er (d) None		
5. If the generators of the cylinder are parallel to z-axis, then equation of cylinder is(a) $ax^2+2gzx+cz^2+2gx+2hz+c = 0$ (b) $by^2+2hyz+cz^2+2fy+2gz+c = 0$ (c) $ax^2+2hxy+by^2+2gx+2fy+c = 0$ (d) None					
6. The line which generates th (a) Axis (b) C	e surface of the cyl Guiding line	inder is called (c) Generator	(d) None of these	[c]	
7. Guiding curve of a right circ (a) Ellipse (b) C	ular cylinder is Circle	(c) Pair of straight lin	es (d) Any closed	[b] curve	
8. The normal to the plane of t (a) Axis (b) F	the guiding circle th Radius	nrough its centre is called (c) Generator	of cylinder (d) None of these	[a]	
9. Equation of the right circula (a) $5x^2 + 8y^2 - 5z^2 + 8zx - 4xy =$ (c) $5x^2 + 8y^2 + 5z^2 + 4yz + 8zx -$	r cylinder whose ra = 0 (l - 4xy -144 = 0 (d	ndius is 4 and axis the line x b) 8x ² + 5y ² + 5z ² + 4zx – 4x d) 5x ² + 8y ² - 5z ² - 4yz - 8zx	= 2y = -z is y - 144 = 0 – 4xy - 144 = 0	[c]	
10. If (α, β, γ) is a point on cyli (a) $\frac{1-\alpha}{x} = \frac{m-\beta}{y} = \frac{n-\gamma}{z}$ (b) $\frac{x}{z}$	nder, then equation $\frac{z-\alpha}{1} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$	th of generator is (c) $\frac{x+\alpha}{1} = \frac{y+\beta}{m} = \frac{z+\gamma}{n}$	(d) $\frac{1+\alpha}{x} = \frac{m+\beta}{y} = \frac{n+\gamma}{z}$	[b]	
11. The equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{2z}{c}$ (a) An ellipsoid (b) A	represents A hyperboloid ((c) An elliptic paraboloid	(d) A hyperbolic paral	[c] boloid	
12. The surface represented b(a) Ellipsoid(c) Hyperboloid of one sheet	y the equation $\frac{x^2}{a^2}$ –	$-\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ is b) Hyperboloid of two shee d) Paraboloid	ts	[b]	
13. The equation of tangent plane at (α, β, γ) to be the conicoid $ax^2+by^2+cz^2=1$ is (a) $a\alpha x + b\beta y + c\gamma z = 1$ (b) $a\alpha x + b\beta y + c\gamma z$ (c) $ax + by + cz = \sqrt{\alpha^2 + \beta^2 + \gamma^2}$ (d) $ax + \beta y + \gamma z = \sqrt{\alpha^2 + b^2 + c^2}$					

14. The condition that the plane $lx + my + nz = p$ may touch the conicoid $ax^2 + by^2 + cz^2 = 1$ is [b]					
(a) $\frac{1}{a} + \frac{m}{b} + \frac{n}{c} = p$	(b) $\frac{l^2}{a} + \frac{m^2}{b} + \frac{n^2}{c} = p^2$	(c) $\frac{1}{a^2} + \frac{m}{b^2} + \frac{n}{c^2} = p^2$	(d) $\frac{l^2}{a} + \frac{m^2}{b} + \frac{m^2}{b}$	$\frac{n^2}{c} = p$	
15. How many normals can be drawn from any point to a conicoid? [b]					
(a) 8	(b) 6	(c) 4	(d) 2		
16. The equation of the director sphere of the conicoid $ax^2 + by^2 + cz^2 = 1$					
(a) $x^2 + y^2 + z^2 = a + b + c$ (c) $x^2 + y^2 + z^2 = a^{-1} + b^{-1} + c$	c ⁻¹	(b) $x^2 + y^2 + z^2 = abc$ (d) $x^2 + y^2 + z^2 = a^2 + b^2 + c^2$	2		
(c) x + y + 2 - a + b + ((u) x + y + z = a + b + c			
17. The central conicoid $ax^2 + by^2 + cz^2 = 1$ will represent an ellipsoid if					
(a) a, b, c are all negative	e	(b) a, b are positive and c is negative and c is	ative		
(c) a, b are negative and	c is positive	(d) a, b, c are all positive			
18. A straight line which	intersects a central co	nicoid in two coincident points is	called a	[b]	
(a) Polar line	(b) Tangent line	(c) Chord of contact	(d) Diameter		
		$x^2 y^2 z$	2		
19. Condition that the plane lx+my+nz = p should touch the ellipsoid $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1$					
(a) $\frac{l^2}{a} + \frac{m^2}{b} + \frac{n^2}{c} = p^2$		(b) $\frac{t^2}{a} + \frac{m^2}{b} + \frac{n^2}{c} = 0$			
(c) $a^2 l^2 + b^2 m^2 - c^2 n^2$		(d) None			
20 The leave of the cont				[_]	

20. The locus of the centres of sections of a central conicoid which pass through a given line is a a (a) Conic (b) Circle (c) Pair of straight lines (d) Paraboloid

II. Fill in the blanks

- 1. The section of a right circular cone by a plane perpendicular to its axis is a circle
- 2. The equation of the right circular cone with vertex at (0, 0, 0) and z-axis as its axis is $\frac{x^2 + y^2}{y^2} = z^2 \tan^2 \theta$ where θ is the semi-vertical angle of the cone.
- 3. The equation of cone when the vertex is origin is, $(1x+my+nz)^2 = (1^2+m^2+n^2)(x^2+y^2+z^2)\cos^2\theta$
- 4. The semi-vertical angle of a right circular cone having sets of three mutually perpendicular tangent

planes is $tan^{-1} \int_{-\infty}^{1} \frac{1}{\sqrt{2}}$

- 5. Any line on the surface of a cylinder is called its Generator
- 6. The length of the perpendicular from any point on a right circular cylinder to its axis is equal to its radius
- 7. The equation of the right circular cylinder of radius 4 whose axis is the y-axis is $\frac{x^2 + z^2}{16}$
- 8. The equation f(x,y)=0 represents a cylinder, whose generators are parallel to the z-axis
- 9. The equation of enveloping cylinder of the sphere $x^2+y^2+z^2 = a^2$ and whose generators are parallel to the line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ is $(lx+my+nz)^2 = (l^2+m^2+n^2) = \frac{x^2+y^2+z^2-a^2}{n^2}$

10. The equation of a right circular cone with vertex at the origin, axis along the x-axis and semi-vertical angle θ is $y^2 + z^2 = x^2 \tan^2 \theta$

- 11. The equation $\frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$ represents a hyperboloid of <u>two sheets</u> 12. $ax^2 + by^2 + cz^2 = 1$ is the <u>standard</u> equation of the conicoid. 13. The central conicoid $ax^2 + by^2 + cz^2 = 1$ is an ellipsoid if the constant a, b, c are all <u>positive</u>.
- 14. The centre of the central conicoid $ax^2 + by^2 + cz^2 = 1$ is at the <u>origin</u>

15. The equation of the tangent plane to the central conicoid $ax^2 + by^2 + cz^2 = 1$ at the point (x_1, y_1, z_1) on it is $axx_1 + byy_1 + czz_1 = 1$

- 16. The equation of the tangent plane at (1, 1, -1) to the conicoid $2x^2 + 3y^2 z^2 = 4$ is 2x + 3y + z = 4
- 17. The plane lx+my+nz=p will touch the conicoid ax² + by² + cz² = 1, provided $\frac{l^2}{a} + \frac{m^2}{b} + \frac{n^2}{c} = p^2$
- 18. The plane lx+my+nz=p touches the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ if $\underline{a^2 l^2 + b^2 m^2 + c^2 n^2} = \underline{p^2}$

- 19. The director sphere of a central conicoid is the locus of the point of intersection of three mutually Perpendicular <u>tangent planes</u> to that conicoid.
- 20. The equation of the director sphere of the central conicoid $ax^2 + by^2 + cz^2 = 1$ is $x^2 + y^2 + z^2 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$

Short Answers.

- 1. Define right circular cone?
- 2. What is the semivertical angle of a right circular cone admitting sets of three mutually perpendicular generators?
- 3. Write the equation of enveloping cylinder?
- 4. Define right circular cylinder?
- 5. What is the equation of right circular cylinder?
- 6. Write the equation of the Ellipsoid?

7. What is the point of intersection of the line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ and the central conicoid

 $ax^{2} + by^{2} + cz^{2} = 1?$

- 8. What is a tangent plane?
- 9. What is the condition for the plane lx + my + nz = p to touch the central conicoid $ax^2 + by^2 + cz^2 = 1$?

10. Define Enveloping cylinder?