TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) VI SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS MATHS (ANALYTICAL SOLID GEOMETRY) QUESTION BANK

I. Multiple choice question 1. Centre of sphere x ² + v (a) (2,-3,2)			(c) (-2,-3,-2)	(d) (1,2,2)	[a]		
2. The radius of the sphe (a) 49	ere x ² + y ² - z ² -2x+4y-6 (b) 5		(c) -7	(d) -5	[b]		
3. The equations $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d=0$ and $lx + my + nz = p$ taken together represents a(a) Circle(b) Plane(c) Pair of planes(d) Sphere							
4. The two spheres $x^2 + y^2 + z^2+2ux+2vy+2wz+d=0$ and $x^2 + y^2 + z^22u'x+2v'y+2w'z+d'=0$ are orthogonal							
(a) uu'+vv'+ww'=d+d' (c) 2(uu'+vv'+ww')=d+d' (d) None of these					[c]		
5. The equation $ax^2 + ay^2 + az^2 + 2ux + 2vy + 2wz + d = 0$, $a \neq 0$, represents a sphere if (a) $u^2 + v^2 + w^2 + ad \leq 0$ (b) $u^2 + v^2 + w^2 + ad \geq 0$ (c) $u^2 + v^2 + w^2 - ad \leq 0$ (d) $u^2 + v^2 + w^2 - ad \geq 0$							
6. The equation of the sphere passing through the origin and making intercepts a,b,c on co-ordinals (a) $x^2 + y^2 + z^2 + ax + by + cz = 0$ (b) $x^2 + y^2 + z^2 - 2ax - 2by - 2cz = 0$ (c) $x^2 + y^2 + z^2 = a + b + c$ (d) $x^2 + y^2 + z^2 - ax - by - cz = 0$							
7. The equation of the tangent plane at a point (x_1, y_1, z_1) of the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ is							
(a) xx ₁ +yy ₁ +zz ₁ +ux+vy+w (c) xx ₁ +yy ₁ +zz ₁ +u(x+ x ₁)+		(b) xx ₁ +yy ₁ +zz ₁ +ux ₁ +vy ₁ +wz ₁ +d=0 (d) None of these			[c]		
8. The equation of the sphere passing through $(0,0,0)$, $(a,0,0)$, $(0,b,0)$, $(0,0,c)$ is (a) $x^2 + y^2 + z^2+2ax+2by+2cz=0$ (b) $x^2 + y^2 + z^2-2ax-2by-2cz=0$ (c) $x^2 + y^2 + z^2-ax-by-cz=0$ (d) $x^2 + y^2 + z^2+ax+by+cz=0$							
9. The centre of the spherical (a) $\left(\frac{a}{2}, 0, 0\right)$	ere which passes throu (b) $\left(0, \frac{b}{2}, 0\right)$			S	[d]		
10. If two spheres of radii r_1 and r_2 cut orthogonally, then the radius of the common circle is (a) r_1r_2 (b) $\sqrt{r_1^2 + r_2^2}$ (c) $r_1r_2\sqrt{r_1^2 + r_2^2}$ (d) $\frac{r_1r_2}{\sqrt{r_1^2 + r_2^2}}$ 11. General equation to the cone which passes through the axes is (a) $ax^2 + by^2 + cz^2 = 1$ (b) $ax^2 + by^2 + cz^2 = 0$ (c) $fyz + gzx + hxy = 1$ (d) $fyz + gzx + hxy = 0$ 12. A cone of second degree can be found to pass through concurrent lines (a) 5 (b) 6 (c) 4 (d) 3							

	13. Equation ax ² +by ² +cz ² +2ux+2vy+2wz+d=0 represents a cone if					
	(a) $au^2+bv^2+cw^2+d=0$	(b) $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$	(c) $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = 0$	(d) None of these		
	14. The equation yz+zx+>	ky=0 represent				
	(a) A pair of planes	(b) A sphere	(c) A cone	(d) A cylinder		
	15. A surface generatedtouching a given surface.(a) Cone	•	s called	nt and intersecting a given cur (d) Plane	rve or [a]	
	16. The condition for the cone ax ² +by ² +cz ² +2fyz+2gzx+2hxy=0 having three mutually perpendicula generators is					
	(a) a+b+c=0	(b) a+b+c=1	(c) ab+bc+ac=0	(d) $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$	[a]	
17. The locus of the lines through the vertex of a cone normal to the tangent planes is called						

17. The locus of the lines through the vertex of a cone normal to the tangent planes is called [C] (a) Right circular cone (b) Enveloping cone (c) Reciprocal cone (c) None of these

- 18. The equation of enveloping cone is [c] (b) $S_1 = T^2$ (c) $SS_1 = T^2$ (a) $S = T_1$ (d) ST = S_1^2
- 19. The equation of the cone whose vertex is the origin and base curve z = k, f(x,y) = 0 is [d] (a) $f\left(\frac{yz}{k}, \frac{xz}{k}\right) = 0$ (b) $f\left(\frac{xz}{k}, \frac{yk}{z}\right) = 0$ (c) $f\left(\frac{xk}{z}, \frac{yz}{k}\right) = 0$ (d) $f\left(\frac{xk}{z}, \frac{yk}{k}\right) = 0$

[c]

- 20. The general equation of a cone which touches the three co-ordinate planes is (a) $\sqrt{fx} + \sqrt{gy} + \sqrt{hz} = 0$ (b) $\sqrt{fx} - \sqrt{gy} + \sqrt{hz} = 0$ (d) $\sqrt{fx} - \sqrt{gy} - \sqrt{hz} = 0$ (c) $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$
- II. Fill in the blanks
- 1. The equation of a sphere whose centre is the point (x_1,y_1,z_1) and radius r is $(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=r^2$ 2. The equation of a sphere whose centre is at origin and radius a is $x^2 + y^2 + z^2 = a^2$
- 3. The equation of a sphere with the end points of its diameter as the points (x_1, y_1, z_1) and (x_2, y_2, z_2) is $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)+(z-z_1)(z-z_2)=0$
- 4. The coordinates of the centre of the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d=0$ are (-u, -v, -w)
- 5. The section of a sphere cut by a plane is a Circle
- 6. The radius of the circle $x^2 + y^2 + z^2=25$, 2x+3y-4z=0 is <u>5</u>
- 7. The tangent plane at any point of a sphere is perpendicular to the radius through that point.
- 8. If the distance between the centers of the two spheres is equal to the difference of their radii, then the two spheres touch internally
- 9. If the distance between the centers of the two spheres is equal to the sum of their radii, then the two spheres touch <u>externally</u>
- 10. The radical plane of the two spheres is <u>perpendicular</u> to the line joining their centers.
- 11. The equation of the cone with vertex at the origin is a homogeneous second degree equation in x,y and z.
- 12. Any straight line lying on the surface of cone is called its generator
- 13. The equation $ax^2+by^2+cz^2+2ux+2vy+2wz+d=0$ represents a cone if $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{a}$
- 14. The tangent plane at any point of a cone passes through its vertex
- 15. Two cones with a common vertex have, in general, Four generators in common.
- 16. Two cones which are such that each is the locus of the normals through the origin to the tangent planes to the other are called <u>reciprocal cones</u>
- 17. A cone may have three mutually perpendicular tangent planes if its reciprocal cone has three mutually perpendicular generators

18. The angle between the lines, x + y + z = 0, ayz + bzx + cxy = 0 is $\frac{\pi}{3}$, if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$

19. The equation F(x,y,z)=0 represents a cone if and only if, four linear equations $F_x = 0$, $F_y = 0$, $F_z = 0$, $F_t = 0$ are <u>consistent</u>

20. The angle between the lines in which the plane x + y + z = 0 cuts the cone ayz + bzx + cxy = 0 is $\frac{\pi}{2}$ if a+b+c=0.

Short Answers.

- 1. Write the coordinates of the centre of the sphere $x^2 + y^2 + z^2 + ux + vy + wz = 0$?
- 2. Write the conditions for the system of spheres to be co-axal?
- 3. Write the equations of the circle circumscribing the triangle formed by the three points (a,0,0),(0,b,0),(0,0,c)?
- 4. Write the condition for orthogonality of two spheres?
- 5. Define Radical centre?
- 6. What is a cone?
- 7. Define Enveloping Cone?
- 8. Write the general equation of the cone with vertex at the point (α, β, γ) ?
- 9. Write the general equation of the cone passing through three axes?
- 10. Write the condition for the cone $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$?