TELANGANA UNIVERSITY

S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) IV SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS MATHS (ALGEBRA) QUESTION BANK

I. Multiple choice questions.

1. A homomorphism $G \rightarrow G^{\prime}$ is an isomorphism iff the kernel consists of \qquad
(a) The identity 'e' only
(b) A normal subgroup of G
(c) A factor group of G
(d) Inverse of G
2. If N and H are normal subgroups of a group G , then NH is \qquad [a]
(a) HN
(b) H
(c) N
(d) None of these
3. Which of the following statements is correct?
[b]
(a) Every homomorphism is an isomorphism
(b) Every isomorphism is a hormorphism
(c) Homomorphism and isomorphism are not related
(d) None of these
4. If N is a normal subgroup of a group G and $a \in G$ then
[d]
(a) $\mathrm{Na} \cap a \mathrm{~N}=\varnothing$
(b Na<aN
(c) $\mathrm{Na} \neq \mathrm{aN}$
(d) $\mathrm{Na}=\mathrm{aN}$
5. For any two elements a, b in a ring, $a(-b)=$
[a]
(a) - (ab)
(b) ab
(c) -(ba)
(d) None of these
6. If $(R,+,$.$) is a ring then (R,+)$ is
[b]
(a) A group
(b) An abelian group
(c) A finite group
(d) Semi group
7. The residue clases modulo 11 with respect addition and multiplication modulo 11 is
(a) Commutative ring
(b) An integral domain
(c) Skew field
(d) A field
8. The characteristic of the residue classes mod 8 is \qquad [c]
(a) 0
(b) 2
(c) 8
(d) 3
9. With the usual addition and multiplication, the set of all even integers is
[a]
(a) A ring
(b) A field
(c) An integral domain
(d) A sub ring
10. If S_{1}, S_{2} are two subrings of a ring R, then $S_{1}+S_{2}$ is
[c]
(a) Subring
(b) Ideal
(c) Need not be a subring
(d) Not a subring
11. If F is a field, then the number of ideals in F is
[c]
(a) 0
(b) 1
(c) 2
(d) Infinite
12. A subring S of a ring R is called ideal if
(a) $\alpha \in S, a \in R \Rightarrow \alpha a \in S$
(b) $\alpha \in S, a \in R \Rightarrow a \alpha \in S$
(c) $\alpha \in S, a \in R \Rightarrow \alpha a, a \alpha \in S$
(d) None of these
13. If R is a non-zero ring so that $a^{2}=a \forall a \in R$ then characteristic of $R=$
[d]
(a) Prime
(b) 0
(c) 1
(d) 2
14. For the homomorphism $\mathrm{f}: \mathrm{R} \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x} \forall \mathrm{x} \in \mathrm{R} \operatorname{Ker} \mathrm{f}=$ \qquad [a]
(a) $\{0\}$
(b) R
(c) $\{0,1\}$
(d) (d) None of these
15. If $f(x), g(x)$ are two non-zero polynomials over a ring $R[x]$ then $\operatorname{deg}\{f(x)+g(x)\}$ is
(a) $=\operatorname{deg} f(x)+\operatorname{deg} g(x)$
(b) $\leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}$
(c) $\geq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x))$
(d) None of these
16. If $f(x)=2+4 x+2 x^{2}, g(x)=2 x+4 x^{2}$ over the ring $\left(1,+_{6}, X_{6}\right)$ then $\operatorname{deg}\{(f x)+g(x)\}=$
[d]
(a) -1
(b) 1
(c) 2
(d) 0
17. Every ring of numbers with unity is \qquad [a]
(a) Integral domain
(b) Divison ring
(c) Field
(d) None of these
18. Homomorphic image of an integral domain is
(a) A ring
(b) Integral domain
(c) Need not be integral domain
(d) None of these
19. A finite integral domain is \qquad [a]
(a) Field
(b) Ring
(c) Group
(d) None of these
20. A field is a
[c]
(a) Non commutative ring
(b) Division ring
(c) Commutative division ring
(d) None of these
II. Fill in the Blanks
21. To determine the quotient group G / N of a group G, N must be a normal group of G .
22. The kernal of homomorphism of a group is a normal group
23. Any subgroup of a cyclic group is a normal subgroup of the group of cyclic
24. The alternating group is a normal subgroup of the symmetric group S_{n}
25. If R is a ring without zero divisors then cancellation laws hold in R.
26. A ring R has no zero divisors if there exist $a, b \in R$ and $a b=0 \Rightarrow a=0$ or $b=0$
27. A division ring has no zero divisors divisors.
28. In a ring R if $a^{2}=a$ for $a \in R$ ' a ' is called idempotent element w.r.t multiplication.
29. If characteristic of a ring $R=2$ and $a, b \in R$ commute then $(a-b)^{2}=\underline{a^{2}+b^{2}}$
30. A subring of $\left(Z_{6},+_{6}, X_{6}\right)$ is $\{\overline{0}, \overline{3}\}$
31. The union of two ideals of a ring R, need not be an ideal of R.
32. For the ring of integers any ideal generated by prime integer is a maximal ideal
33. A maximal ideal of the ring of integers is generated by prime integer
34. If U is a maximal ideal of the ring R then there exists no ideal U^{\prime} of R such that $U \subset U^{\prime} \subset R$
35. A finite integral domain is a field
36. In the quotient ring R / U the zero element is and the unity element is $\underline{U, 1+U}$
37. For a commutative ring R, with unity if U is a maximal ideal then R / U is a field
38. If $f: R \rightarrow R^{\prime}$ is a ring homomorphism then Ker f is an ideal of R
39. Every non-zero element of a field is a unit
40. If $z[i]=(a+b i \mid a, b \in z)$ then the ring is called ring of Gaussian integers

Short Answers.

1. State first isomorphism theorem?
2. Mention three properties of rings?
3. What is an idempotent element?
4. Define an integral domain?
5. What is a nilpotent element?
6. Find the principal ideal generated by $3 \in Z$?
7. Define prime ideal?
8. Define ring homomorphism?
9. State first isomorphism theorem?
10. Give two examples of prime fields?
