TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) IV SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS MATHS (ALGEBRA) QUESTION BANK

 Multiple choice questions. A homomorphism G→G' is an isomorphism iff the kernel consists of (a) The identity 'e' only (b) A normal subgroup of G (c) A factor group of G (d) Inverse of G 							
2. If N and H are normal s (a) HN	subgroups of a group G (b) H	i, then I (c) N	NH is	(d) None	of the	se	[a]
3. Which of the following(a) Every homomorphism(c) Homomorphism and i	g statements is correct n is an isomorphism somorphism are not re	elated	(b) Every isom (d) None of th	orphism i ese	is a hoi	rmorphism	[b]
4. If N is a normal subgro (a) Na∩ aN=Ø	up of a group G and a (b Na <an< td=""><td>ϵ G the (c) Na=</td><td>n ≠ aN</td><td>(d) Na =</td><td>aN</td><td></td><td>[d]</td></an<>	ϵ G the (c) Na=	n ≠ aN	(d) Na =	aN		[d]
5. For any two elements (a) - (ab)	a, b in a ring, a(-b) = (b) ab	(c) -(ba	a)	(d) None	of the	se	[a]
6. If (R,+,.) is a ring then ((a) A group	[R,+) is (b) An abelian group	(c) A fi	nite group	(d) Semi	group		[b]
7. The residue clases mod (a) Commutative ring	dulo 11 with respect ac (b) An integral domai	dition a	and multiplicat (c) Skew field	ion modu ((lo 11 i: d) A fie	s Ild	[d]
8. The characteristic of th (a) 0	ne residue classes mod (b) 2	8 is	(c) 8	(0	d) 3		[c]
9. With the usual additio (a) A ring	n and multiplication, th (b) A field	ne set o	f all even integ (c) An integral	ers is domain		(d) A sub ring	[a]
10. If S ₁ , S ₂ are two subrin (a) Subring	ngs of a ring R, then S ₁ (b) Ideal	+ S ₂ is	(c) Need not b	e a subrir	ıg	(d) Not a subr	[c] ing
11. If F is a field, then the (a) 0	e number of ideals in F (b) 1	is	(c) 2			(d) Infinite	[c]
12. A subring S of a ring F (a) $\alpha \in S, a \in R \Rightarrow \alpha a \in$ (c) $\alpha \in S, a \in R \Rightarrow \alpha a, a$	R is called ideal if S $\alpha \in S$	(b) α ∈ (d) Nor	$f S, a \in R \Rightarrow a_0$ ne of these	$\alpha \in S$			[c]
13. If R is a non-zero ring (a) Prime	so that $a^2 = a \forall a \in R$ (b) 0	hen cha	aracteristic of F (c) 1	{ = ((d) 2		[d]
14. For the homomorphis	sm f:R $\rightarrow R$ defined by	f(x) = x '	$\forall x \in R \text{ Ker f} = $				
(a) {0}	(b) R		(c) {0,1}	(0	d) (d) N	Ione of these	

15. If $f(x)$, $g(x)$ are two non-zero polynomials over a ring $R[x]$ then deg $\{f(x)+g(x)\}$ is(a) = deg $f(x) + deg g(x)$ (b) $\leq \max \{ deg f(x), deg g(x) \}$ (c) $\geq \max \{ deg f(x), deg g(x) \}$ (d) None of these									
16. If f(x)=2+4x+2x ² , g(x) (a) -1	=2x+4x ² over the rir (b) 1	ng (I, + ₆ , X ₆) then c	leg {(fx)+g(x)}= (c) 2	(d) 0	[d]				
17. Every ring of number (a) Integral domain	rs with unity is (b) Divison	ring	(c) Field	(d) None o	[a] f these				
18. Homomorphic image(a) A ring(c) Need not be integral	e of an integral dom domain	ain is(b) Int (d) Nc	egral domain one of these		[c]				
19. A finite integral dom (a) Field	ain is (b) Ring	(c) Group	(d) Nor	e of these	[a]				
 (a) Heid 20. A field is a (a) Non commutative rin (c) Commutative division 	n ring	(b) Division ri (d) None of tl	ng nese		[c]				
1. To determine the quo 2. The kernal of homomodes 3. Any subgroup of a cycle 4. The alternating group 5. If R is a ring without zero 6. A ring R has no zero des 7. A division ring has no 8. In a ring R if $a^2 = a$ for 9. If characteristic of a ristic of the ring of (Z ₆ , + ₆ , > 11. The union of two ides 12. For the ring of integer 13. A maximal ideal of the second se	tient group G/N of a orphism of a group lic group is <u>a normal</u> is a <u>normal</u> subgrou ero divisors then <u>can</u> ivisors if <u>there exist</u> <u>zero divisors</u> divisor $a \in R$ 'a' is called <u>id</u> en ng R=2 and a, $b \in R$ (a) is { $\overline{0},\overline{3}$ } als of a ring R, <u>need</u> ers any ideal generation aring of integers is al of the ring R then ain is a <u>field</u> R/U the zero eleme ing R, with unity if U emomorphism then ent of a field is <u>a un</u> z) then the ring is c m theorem? ties of rings? at element? nain? ement?	a group G, N must is a <u>normal group</u> al <u>subgroup of the</u> up of the symmetri <u>ncellation laws</u> ho <u>a, beR and ab = 0</u> rs. <u>empotent elemen</u> commute then (a <u>d not be an ideal of</u> ted by prime integ generated by <u>prin</u> there exists no id nt is and the unity J is a maximal idea Ker f is <u>an ideal of</u> <u>nit</u> alled <u>ring of Gauss</u>	be a <u>normal group of cyclic</u> ric group S _n Id in R. $a \Rightarrow a = 0 \text{ or } b = 0$ $a \Rightarrow a \Rightarrow$	bup of G. \underline{O} ation. \underline{ideal} that $\underline{\cup \subset \cup' \subset R}$ $\underline{+ U}$ \underline{ield}					

8. Define ring homomorphism?

9. State first isomorphism theorem?

10. Give two examples of prime fields?