TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) IV SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS MATHS (ALGEBRA) QUESTION BANK

 I. Multiple choice questions. 1. For a, b, c ∈ group (G,) (abc)⁻¹ 	1 =	$(c) c^{-1} b^{-1} c^{-1}$	$(d) e^{-1} e^{-1} b^{-1}$	[c]			
(d) d D C	(b) CDA	(C) C D A	(0) C A D				
2. If in a group a is an element of order 5 and x is an element of order 2 then x^{-1} is an element of or							
(a) 5	(b) 2	(c) 7	(d) 3	[a]			
3. In a finite group G, the order (a) Divides the order of G (c) Adds with the order of G	of each element of G (b) N (d) N	Iultiplies the order of G one		[a]			
4. The number of elements in t (a) 12	he alternating group A (b) 8	₄ is (c) 4	(d) 3	[a]			
5. In any group G the number c (a) Two	of identity elements is (b) One	(c) Zero	(d) Three	[b]			
6. For any a in a group G, (a ⁻¹) ⁻¹ (a) a ⁻¹	is (b) a ²	(c) e	(d) a	[d]			
7. For any a, b in an abelian gro (a) a ² b ²	oup, (ab) ² = (b) ab ²	(c) a ² b	(d) ab	[a]			
8. For any a, b in a group, $(ab)^{-1}$ (a) $a^{-1} b^{-1}$	"= (b) ba ⁻¹	(c) ab	(d) b ⁻¹ a ⁻¹	[d]			
9. If G = <a> is a finite cyclic group of order n, then, (a) <a'> = <a<sup>n-1> (b) <a'> = <a<sup>gcd(n,x)> (c) <a'> \subseteq <a<sup>s> if r is a multiple of s mod n (d) All</a<sup></a'></a<sup></a'></a<sup></a'>							
10. Let H be a subgroup of G th (a) Same as that of G	en the identity of H is (b) Not the identity	in G (c) Not in G	(d) All of the above	[a]			
11. The inverse of the permuta (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}$	$ \begin{array}{ccccc} \text{tion} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \text{ is } \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} $	(c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 51 & 3 & 1 & 2 \end{pmatrix}$	(d) None of these	[b]			
12. The permutation $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ (a) Even permutation (b) O	is an dd permutation	(c) Both (a) and (b)	(d) None of these	[b]			
13. If H is a subgroup of G, m is the distinct right cosets, of H in G, n is the number of distinct left cosets of							

 H in G, then
 [c]

 (a) m=2n
 (b) n=2m

 (c) m=n
 (d) None of these

14. If \emptyset is a hormorphism (a) $(\emptyset(g))^{-1}$	i from a group G into a (b) Ø(g)	a group G, then f	or any g in G <i>,</i> (c) (Ø(g)) ⁻¹) ⁻¹	\emptyset (g ⁻¹) is (d) \emptyset (g ⁻¹)	[a]				
15. To define the quotier (a) N must be an abelian (c) N must be a normal se	nt group G/N of a grou subgroup of G ubgroup o f G	p G (b) It is enough (d) None of the	if N is a subg	roup G	[c]				
16. If p,q be any two eler (a) No solution	nents of a group G, th (b) An unique solutio	en the equations on (c) Man	s px = q and y y solutions	p = q have in G (d) Two solutions	[b] s				
17. If a binary operation (a) Commutative	* is defined on a set S(b) Associative	by a * b = a ∀ a,l (c) Not a	$b \in S$ then $*$ is associative	s (d) Inverse	[b]				
18. The number of right (a) Greater than the num(c) Less than the number	cosets of any subgroup ber of left cosets of left cosets	o of a finite grou (b) Equa (d) Less	p a is al to the num than or equa	ber of left cosets I to the number of	[b] f left cosets				
19. Let G be a group of o (a) a = e ⁿ	rder n and a ∈ G. Ther (b) a ⁿ = e	n(c) a = e	2	(d) None	[b]				
20. Q under addition is n (a) Q under multiplicatio (c) Q* under multiplicatio	ot isomorphic to n on	(b) Q* under ad (d) None	ddition		[c]				
1. Fin the Blanks 1. If a is a generator of a cyclic group G, then \underline{a}^{-1} is also a generator of G. 2. A cyclic group of order 'n' has $\underline{\emptyset}(n)(=number of positive integers less than and relatively prime to n)$ Generators. 3. If H, K are normal subgroups of group G such that H ∩ K = (e) and G = HK. Then $\underline{G} \cong \underline{H} \oplus \underline{K}$ 4. The normalizer N (a) of a in group G is $\{\underline{x} \in \underline{G}/a\underline{x} = \underline{x}a\}$ 5. If the commutator of every two elements of G is the identity element of G, then G is an abelian group. 6. The number of generators of an infinite cyclic group is 2 7. The total number of subgroups of a group of order 13 is 2 8. If a finite group of order n contains an element of order n, then the group must be cycle 9. The intersection of two subgroups of a group is a sub group of the group 10. The centre C of a group G is the set C = {c ∈ G/cx = x ⊂ X × ∈ G} 11. Product of two odd permutations is an <u>even</u> permutation. 12. Sn Indicates the group of all permutations on a finite set with n elements. 13. f:G ₁ →G ₂ and g:G ₂ →G ₃ be isomorphisms then g of :G ₁ →G ₃ of is an isomorphism. 14. G is the group of symmetries of the <u>rectangle</u> 15. If G ₁ ≅ G ₂ and H ₁ ≅H ₂ then G ₁ X H ₁ ≅ G ₂ X H ₂ 16. If G is any group, a is any element of G, then f(x) = a x a ⁻¹ is <u>automorphism</u> of G 17. The centre of an abelian group G is <u>G</u> 18. If G is commutative and G* and G ⁰ are same then it is called <u>regular representation</u> of G. 19. The order of -1 in the multiplicative group (-1, 1, i, -i) is <u>2</u> 20. The number of distinct left or right cosets of a subgroup H in a finite group G is called as <u>index</u> of H.									
 What is a Group? Define order of an eler Find the order of a⁶ if 	ment of a group? $ a =15$?								

- 4. Define center of a group?
 5. What is the group of 4th root of unity?

- 6. Define Even permutation and odd permutation?
- 7. List any two properties of cosets?
- 8. Find the index of a subgroup H with $\left|G\right|$ =12, $\left|H\right|$ =6 ?
- 9. State Lagrange's theorem?
- 10. State Cayley's theorem?