TELANGANA UNIVERSITY

S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) IV SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS MATHS (ALGEBRA) QUESTION BANK

I. Multiple choice questions.

1. For $a, b, c \in \operatorname{group}(G,)(a b c)^{-1}=$

$$
[\mathrm{c}]
$$

(a) $a^{-1} b^{-1} c^{-1}$
(b) cba
(c) $c^{-1} b^{-1} a^{-1}$
(d) $c^{-1} a^{-1} b^{-1}$
2. If in a group a is an element of order 5 and x is an element of order 2 then x^{-1} is an element of order
[a]
(a) 5
(b) 2
(c) 7
(d) 3
3. In a finite group G, the order of each element of G
[a]
(a) Divides the order of G
(b) Multiplies the order of G
(c) Adds with the order of G
(d) None
4. The number of elements in the alternating group A_{4} is \qquad [a]
(a) 12
(b) 8
(c) 4
(d) 3
5. In any group G the number of identity elements is
[b]
(a) Two
(b) One
(c) Zero
(d) Three
6. For any a in a group $G,\left(a^{-1}\right)^{-1}$ is \qquad [d]
(a) a^{-1}
(b) a^{2}
(c) e
(d) a
7. For any a, b in an abelian group, $(a b)^{2}=$
[a]
(a) $a^{2} b^{2}$
(b) $a b^{2}$
(c) $a^{2} b$
(d) $a b$
8. For any a, b in a group, $(a b)^{-1}=$
(a) $a^{-1} b^{-1}$
(b) $b a^{-1}$
(c) $a b$
(d) $b^{-1} a^{-1}$
9. If $\mathrm{G}=<a>$ is a finite cyclic group of order n , then,
[d]
(a) $\left\langle a^{\prime}\right\rangle=\left\langle a^{n-1}\right\rangle$
(b) $\left\langle a^{\prime}\right\rangle=\left\langle a^{g c d(n, x)}\right\rangle$
(c) $\left\langle a^{\prime}\right\rangle \subseteq\left\langle a^{s}\right\rangle$ if r is a multiple of $s \bmod n$
(d) All
10. Let H be a subgroup of G then the identity of H is \qquad [a]
(a) Same as that of G
(b) Not the identity in G
(c) Not in G
(d) All of the above
11. The inverse of the permutation $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4\end{array}\right)$ is \qquad [b]
(a) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1\end{array}\right)$
(b) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$
(c) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 51 & 3 & 1 & 2\end{array}\right)$
(d) None of these
12. The permutation $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$ is an
[b]
(a) Even permutation
(b) Odd permutation
(c) Both (a) and (b)
(d) None of these
13. If H is a subgroup of G, m is the distinct right cosets, of H in G, n is the number of distinct left cosets of H in G, then
(a) $m=2 n$
(b) $n=2 m$
(c) $m=n$
(d) None of these
14. If \varnothing is a hormorphism from a group G into a group G, then for any g in $G, ~ \emptyset\left(g^{-1}\right)$ is
(a) $(\varnothing(\mathrm{g}))^{-1}$
(b) $\varnothing(\mathrm{g})$
(c) $\left.(\varnothing(\mathrm{g}))^{-1}\right)^{-1}$
(d) $\varnothing\left(\mathrm{g}^{-1}\right)^{2}$
15. To define the quotient group G / N of a group G \qquad [c]
(a) N must be an abelian subgroup of G
(b) It is enough if N is a subgroup G
(c) N must be a normal subgroup of G
(d) None of these
16. If p, q be any two elements of a group G, then the equations $p x=q$ and $y p=q$ have in G
[b]
(a) No solution
(b) An unique solution
(c) Many solutions
(d) Two solutions
17. If a binary operation * is defined on a set S by a * $b=a \forall a, b \in S$ then * is
[b]
(a) Commutative
(b) Associative
(c) Not associative
(d) Inverse
18. The number of right cosets of any subgroup of a finite group a is
[b]
(a) Greater than the number of left cosets
(b) Equal to the number of left cosets
(c) Less than the number of left cosets
(d) Less than or equal to the number of left cosets
19. Let G be a group of order n and $a \in G$. Then \qquad [b]
(a) $a=e^{n}$
(b) $a^{n}=e$
(c) $a=e$
(d) None
20. Q under addition is not isomorphic to \qquad [c]
(a) Q under multiplication
(b) Q^{*} under addition
(c) Q^{*} under multiplication
(d) None
II. Fill in the Blanks

1. If a is a generator of a cyclic group G, then \underline{a}^{-1} is also a generator of G.
2. A cyclic group of order ' n ' has $\underline{\phi(n)(=n u m b e r ~ o f ~ p o s i t i v e ~ i n t e g e r s ~ l e s s ~ t h a n ~ a n d ~ r e l a t i v e l y ~ p r i m e ~ t o ~} n$) Generators.
3. If H, K are normal subgroups of group G such that $H \cap K=(e)$ and $G=H K$. Then $\underline{G \cong H} \oplus \underline{K}$
4. The normalizer $N(a)$ of a in group G is $\{x \in G / a x=x a\}$
5. If the commutator of every two elements of G is the identity element of G , then G is an abelian group.
6. The number of generators of an infinite cyclic group is $\underline{2}$
7. The total number of subgroups of a group of order 13 is $\underline{2}$
8. If a finite group of order n contains an element of order n, then the group must be cycle
9. The intersection of two subgroups of a group is a sub group of the group
10. The centre C of a group G is the set $C=\{c \in G / c x=x c \forall x \in G\}$
11. Product of two odd permutations is an even permutation.
12. Sn Indicates the group of all permutations on a finite set with n elements.
13. $\mathrm{f}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ and $\mathrm{g}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{3}$ be isomorphisms then g of : $\mathrm{G}_{1} \rightarrow \mathrm{G}_{3}$ of is an isomorphism.
14. G is the group of symmetries of the rectangle
15. If $\mathrm{G}_{1} \cong \mathrm{G}_{2}$ and $\mathrm{H}_{1} \cong \mathrm{H}_{2}$ then $\underline{\mathrm{G}}_{1} \mathrm{XH}_{1} \cong \mathrm{G}_{2} \underline{X H}_{2}$
16. If G is any group, a is any element of G, then $f(x)=a x a^{-1}$ is automorphism of G

17 The centre of an abelian group G is $\underline{\mathrm{G}}$
18. If G is commutative and G^{*} and G^{p} are same then it is called regular representation of G .
19. The order of -1 in the multiplicative group $(-1,1, i,-i)$ is $\underline{2}$
20. The number of distinct left or right cosets of a subgroup H in a finite group G is called as index of H.

Short Answers.

1. What is a Group?
2. Define order of an element of a group?
3. Find the order of a^{6} if $|a|=15$?
4. Define center of a group?
5. What is the group of $4^{\text {th }}$ root of unity?
6. Define Even permutation and odd permutation?
7. List any two properties of cosets?
8. Find the index of a subgroup H with $|G|=12,|H|=6$?
9. State Lagrange's theorem?
10. State Cayley's theorem?
