TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) II SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS PHYSICS (THERMAL PHYSICS) QUESTION BANK

I. Multiple choice questi	ons.								
1of a gas is due to transport of momentum.									
(a) Energy (b) Mass (c) Viscosity				(d) Density					
2. The mean free path of a gas molecule is inversely proportional to square of the [
(a) Diameter of the molecule (b) Radius of the molecule									
(c) Density of the molecule	(c) Density of the molecule (d) Pressure of the molecule								
3. The Viscosity of a gas is	directly proportiona	alto			[C]				
(a) \sqrt{T}	(b) T ²		(c) Density of gas	(d) Temperatur	e				
4. The coefficient of therm	al conductivity=C _v x				[a]				
(a) Coefficient of viscosity	(t	b) Temperatur	е						
(c) Coefficient of difficusio	n (d	d) Pressure							
5. At very low temperature	es, the coefficient o	f viscosity of a	gas		[a]				
(a) Is independent of pressure (b) Decreases with increasing pressure									
(c) Is equal to pressure	(0	d) Increases w	ith decreasing pressure		r . 1				
6. The entropy of universe	continu	lously.			[C]				
(a) Remains constant	(b) independent	t while optrop	(c) increases	(d) Decreases	[6]				
(a) Remains constant	(h) Remains dene	ndent	y	(d) Decreases	[U]				
8 The proses in which con	duction of heat is a	long a metal h	ar and electricity flow al	ong a	[h]				
Besistor is									
(a) Reversible Process	(b) Irreversible pr	ocess	(c) Isothermal process	(d) Adiabatic process					
9. The work done in an iso	thermal expansion	of a gas deper	nds on .	(4) / (4) 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	[c]				
(a) Expansion ratio	(b) Temperature	0	(c) Both (a) and (b)	(d) None of the above					
10. The change in entropy of universe is given as									
(a) dS _{universe} ≥ 0 (b) dS _{universe} ≤ 0 (c) dS _{universe} $= 0$ (d) dS _{universe} $\neq 0$									
11. The general expression	n for Joule – Kelvin (coefficient is g	given as μ=		[a]				
(a) $\frac{1}{\sqrt{T(\frac{\partial V}{\partial t})}}p-V$	(b) $\int T(\frac{\partial}{\partial t})$	$\frac{V}{p+V}$	(c) $P\left(\frac{\partial V}{\partial x}\right) - \frac{a}{\partial x}\left(\frac{\partial V}{\partial x}\right)$	$\begin{pmatrix} V \\ - \end{pmatrix}$ (d) $R \left(P - \frac{a}{2} \right)$					
$Cp \lfloor \partial T \rangle^{1}$] [∂		$\left(\partial T\right)_{p} V^{2} \left(\partial T\right)$	$(V^2)_p$)				
12. In an adiabatic process, the work done by a system is due to its energy [a]									
•		,		07					
(a) Internal	(b) External (d	c) Heat	(d) None of the above						
13. The phenomenon of changing temperature is known as [b]									
(a) Vander Waal's	(b) Joule kelvin ef	fect	(c) Maxwell's equation	(d) Perfect gas					
(a) vandet waars		iect		(u) Ferrect gas					
14. The vander waals equation for one mole of a gas is given as, [c									
(a) $\begin{pmatrix} a \\ B \end{pmatrix} (V + b)$	- DT (1	$(\mathbf{p} \ a)$	V(b) - PT						
(a) $\left(\frac{r}{V^2} \right)^{(v+b) = KI}$ (b) $\left(\frac{r}{V^2} \right)^{(v-b) = KI}$									
(c) $\left(P + \frac{a}{V^2}\right)(V-b) = RT$ (d) $\left(P - \frac{a}{V^2}\right)(V+b) = RT$									
		$\langle v \rangle$							

15. The coefficient of performance of a refrigerator is given by, k = _____ [d] (a) $\frac{T_1}{T_2 - T_1}$ (b) $\frac{T_2}{T_2 - T_1}$ (c) $\frac{T_1}{T_1 - T_2}$ (d) $\frac{T_2}{T_1 - T_2}$

16. Maxwell's first T.dS equ	uation, T.dS =				[a]		
(a) $C_V dT + T \left(\frac{\partial P}{\partial V}\right)_P dV$		(b) $C_P dT - T \left(\frac{\partial V}{\partial T}\right)_P dP$					
(c) $C_V \left(\frac{\partial T}{\partial P}\right) dP + C_p \left(\frac{\partial T}{\partial P}\right)$	$\left(\frac{\partial T}{\partial V}\right)_P dV$	(d) C _P	$dV - T\left(\frac{\partial V}{\partial T}\right)_V dV$				
17. The equation for Helm	[c]						
(a) U + TS	(b) TS – U	(c) U –	TS	(d) $\frac{TS}{U}$			
18. A gas always shows coo	ling effect in			0	[d]		
(a) Adiabatic expansion	(b) Joule Thomson expa	ansion	(c) Gas expansi	on	(d) Joule expansior		
19. The device used for converting high pressure of refrigerant into low pressure is [a]							
(a) Evaporator	(b) Expansion value		(c) condenser		(d) Compressor		
20. Ideal properties of an re	efrigerant are				[c]		
(a) Low viscosity and less expensive		(b) Easily available and simple to handle					
(c) Both a and b		(d) None of the above					

II. Fill in the blanks

- 1. <u>Average velocity</u> can be defined as the average of the velocities of all the gas molecules.
- 2. The square root of the mean of the velocities of a large number of the gas molecules is root mean square velocity
- 3. A non-equilibrium gas has different layers with different velocities
- 4. The <u>relative motion</u> of layers give rise to transport of momentum, which in turn results in viscosity.
- 5. The expression for average energy per molecule is given by, $E = \frac{3}{2} \frac{KT}{KT}$
- 6. In <u>isolated</u> system, neither matter nor energies are exchanged with the surroundings as the boundary Is sealed as well as insulated.
- 7. The entropy of universe remains constant
- 8. Thermodynamics scale of temperature is introduced by kelvin
- 9. <u>Reversible</u> process occurs at very slow speed.
- 10. In <u>Adiabatic</u> process, temperature keeps on changing.
- 11. The <u>net</u> energy of a system is known as internal energy or intrinsic energy of the system.
- 12. The expression for enthalpy is given as, H= U + PV
- 13. The viscosity of the refrigerant is maintained \underline{low}
- 14. Refrigerator or vapour compression cycle operates at both high and low pressure
- 15. In an adiabatic process, dQ= 0 (zero)
- 16. The boiling point of a substance increases with the <u>increase</u> in pressure.
- 17. In case of Joule Thomson expansion, cooling effect depends on the external work done by its internal energy.
- 18. A thermodynamic potential is a scalar quantity used to represent the thermodynamic state of a system.
- 19. The heat transferred to the working fluid in an evaporator is known as refrigeration load
- 20. In an adiabatic and Joule Thomson expansion system is not isolated mechanically from the external system.

III. Short Answers.

- 1. Define coefficient of diffusion?
- 2. Mention the effect of temperature and pressure on coefficient of diffusion?
- 3. Write the expression for the mean free path of a gas at pressure P and temperature T?
- 4. Define change in entropy?
- 5. Write the purpose of thermodynamic scale?
- 6. Define regulation of ice?
- 7. Define molar specific heat?
- 8. What is refrigeration?
- 9. Write the Ratio of Cp and Cv ?
- 10. Write the expression for Joule-Kelvin coefficient for Vander Waals?