TELANGANA UNIVERSITY

S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) II SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS
 MATHS (DIFFERENTIAL EQUATIONS) QUESTION BANK

I. Multiple Choice Questions.

1. If the auxiliary equation has complex conjugate roots, then the complementary function is
[a]
(a) $\mathrm{e}^{\alpha x}\left(\mathrm{C}_{1} \cos \beta \mathrm{x}+\mathrm{C}_{2} \sin \beta \mathrm{x}\right)$
(b) $\mathrm{e}^{-\alpha x}\left(\mathrm{C}_{1} \cos \beta \mathrm{x}+\mathrm{C}_{2} \sin \beta \mathrm{x}\right)$
(c) $\mathrm{e}^{\beta x}\left(\mathrm{C}_{1} \cos \alpha \mathrm{x}+\mathrm{C}_{2} \sin \alpha \mathrm{x}\right)$
(d) $e^{-\beta x}\left(C_{1} \cos \alpha x+C_{2} \sin \alpha x\right)$
2. The complementary function of an equation having the roots $-1,-1,4$ is
[b]
(a) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{4 x}+\mathrm{C}_{3} e^{-x}$
(b) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{-x}+\mathrm{C}_{3} e^{4 x}$
(c) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{-4 x}+\mathrm{C}_{3} e^{x}$
(d) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{x}+\mathrm{C}_{3} e^{-4 x}$
3. The general solution of nth order non homogeneous differential equation is
[a]
(a) $y=y_{c}+y_{p}$
(b) $y=y_{c} \cdot y_{p}$
(c) $y=y_{c}-y_{p}$
(d) $y=y_{c}\left(\frac{1}{y p}\right)$
4. The particular integral of $\left(D^{2}-5 D+6\right) y=0$ is
[d]
(a) 1
(b) 5
(c) 6
(d) 0
5. The particular integral of $\frac{\cos 3 x}{D^{2}-1}$ is
[c]
(a) $\frac{1}{10} \cos 3 x$
(b) $\frac{1}{10} \sin 3 x$
(c) $-\frac{1}{10} \cos 3 x$
(d) $-\frac{1}{10} \sin 3 x$
6. The complementary function of $\left(D^{2}-1\right)$ is
[c]
(a) $\mathrm{C}_{1} e^{x}+\mathrm{C}_{2} e^{-x}$
(b) $C_{1} \cosh x+C_{2} \sinh x$
(c) Both a \& b
(d) Neither a nor b
7. The particular integral of $\sin \alpha \mathrm{x}$, if $\mathrm{f}\left(-\mathrm{a}^{2}\right)=0$ is
[a]
(a) $\frac{-x}{2 a} \cos a x$
(b) $\frac{x}{2 a} \cos a x$
(c) $\frac{-x}{2 a} \sin a x$
(d) $\frac{x}{2 a} \sin a x$
8. The particular integral of $\frac{9}{D^{2}+5 D+4}$ is
[d]
(a) 0
(b) 1
(c) $\frac{4}{9}$
(d) $\frac{9}{4}$
9. The complementary function of $\left(D^{2}+4\right) y$ is
(a) $C_{1} \cos 2 x+C_{2} \sin 2 x$
(b) $C_{1} \cosh 2 x+C_{2} \sinh 2 x$
(c) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) e^{2 x}$
(d) $\mathrm{C}_{1} e^{2 x}+\mathrm{C}_{2} e^{-2 x}$
10. The particular integral of 4×2 can be written as (using method of undetermined coefficient)
[a]
(a) $A x^{2}+B x+C$
(b) $A x^{2}-B x+C$
(c) $A x^{2}+B x-C$
(c) $-\left(A x^{2}+B x+C\right)$
11. If one of the solutions of differential equation is known then the second solution can be determined by using
[c]
(a) Method of undetermined coefficients
(b) Variation of parameters
(c) Reduction of order method
(d) None of these
12. If $y_{2}=y_{1} \int u(x) d x$ then, $u(x)=$
[b]
(a) $\exp \frac{\left[\frac{f_{1}(x)}{f_{2}(x)} d x\right]}{y_{1}^{2}}$
(b) $\exp \frac{\left[-\int \frac{f_{1}(x)}{f_{2}(x)} d x\right]}{y_{1}^{2}}$
(c) $\exp \frac{\left[\frac{f_{2}(x)}{f_{1}(x)} d x\right]}{y_{1}^{2}}$
(d) $\exp \frac{\left[-\int \frac{f_{2}(x)}{f_{1}(x)} d x\right]}{y_{1}^{2}}$
13. In Cauchy euler equation, x is substituted as
[c]
(a) t
(b) $\log t$
(c) e^{t}
(d) None of these
14. The two linearly independent solutions of $\left(D^{2}-3 D+2\right) y$ is
[d]
(a) $e^{-x}, e^{-2 x}$
(b) $e^{-x}, e^{2 x}$
(c) (a) $e^{x}, e^{-2 x}$
(d) (a) $e^{x}, e^{2 x}$
15. If $Q(x)=x+\log x$ by cauchy euler equation $Q(x)$ becomes
[a]
(a) $e^{t}+t$
(b) $e^{t}-t^{2}$
(c) $\mathrm{e}^{\mathrm{t}} \cdot \mathrm{t}^{2}$
(d) $t e^{t}$
16. In Legendre's linear equation, $a x+b$ is substituted as
[b]
(a) $\log \mathrm{t}$
(b) e^{t}
(c) e^{-t}
(d) None
17. Which of the following is miscellaneous differential equation?
[c]
(a) $\frac{d^{2} y}{d x^{2}}=F(x)$
(b) $\frac{d x}{d y}=F^{\prime}(x)$
(c) $\frac{d^{2} y}{d x^{2}}=f(x)$
(d) None
18. Which of the following is a partial differential equation?
[d]
(a) $\frac{\partial z}{\partial x}=p$
(b) $\frac{\partial z}{\partial y}=q$
(c) $\frac{\partial^{2} z}{\partial x^{2}}=p$
(d) None
19. The solution obtained from complete integral through assigning particular values to constants is
[b]
(a) Complete solution
(b) Particular solution
(c) Both a \& b
(d) None
20. The subsidiary equation of $(y+z) p+(x+z) q=x+y$ is
(a) $\frac{d x}{y+z}=\frac{d y}{x+z}=\frac{d z}{x+y}$
(b) $\frac{d x}{(y+z)^{2}}=\frac{d y}{(x+z)^{2}}=\frac{d z}{(x+y)^{2}}$
(c) $\frac{d x}{y-z}=\frac{d y}{x-z}=\frac{d z}{x-y}$
(d) None
II. Fill in the blanks.
21. The general solution of $\mathrm{n}^{\text {th }}$ order homogeneous differential equation is complementary function
22. The auxiliary equation of $\left(D^{2}-3 D+2\right) y$ is $m^{2}-3 m+2=0$
23. The roots of ($\left.D^{2}-5 D+6\right) y$ are 2,3
24. If the roots of auxiliary equation are real then the complementary function is $\underline{\mathrm{C}}_{1} e_{1}^{m \cdot x}+\mathrm{C}_{2} e_{2}^{m \cdot x}+\ldots \ldots$.
25. The particular integral for $\mathrm{f}(\mathrm{D}) \mathrm{y}=e^{a x}, \mathrm{f}(\mathrm{a}) \neq 0$ is $\frac{e^{a x}}{f(a)}$
26. The value of $\frac{e^{2 x}}{D^{2}+4 D+3}$ is $\frac{e^{a x}}{15}$
27. The auxiliary equation having the roots 2,3 is $\mathrm{m}^{2}-5 m+6=0$
28. The complementary function of ($D+2$) ($D-2$) is ${\underline{C_{1}}} e^{-2 x}+\mathrm{C}_{2} e^{2 x}$
29. The particular integral of differential equations depends on $\underline{Q(x)}$
30. In method of undetermined coefficients $f(D) y=\underline{f(D)} y_{p}$
31. If y_{1} is a known solution then y_{2} can be determined by formula $y^{2}=y_{1} \int u(x) d x$
32. By substituting $x=e^{t}$, Cauchy-Euler equation is converted into linear equation with constant coefficients.
33. The particular integral of $\left(D^{2}+4 D+4\right) y=6 e^{x}$ is $\frac{2}{3} e^{x}$
34. In method of variation of parameters, the two linearly independent solutions can be determined from complementary function
35. If $Q(x)=x^{2}$ in Cauchy-Euler equation reduced to linear order differential equation then x^{2} becomes $e^{2 t}$
36. The two linearly independent solutions of $\left(D^{2}+4 D+4\right) y$ are $\underline{e^{-2 x}, x e^{-2 x}}$
37. Partial differential equation can be obtained by eliminating arbitrary constants or arbitrary functions involving two or more variables.
38. The solution of first order PDE that has two arbitrary constants is called as complete indtegral
39. The linear P.D.E of first order is also called as Lagrange's linear P.D.E
40. The equation of the form, $\frac{d x_{1}}{P_{1}}=\frac{d x_{2}}{P_{2}} \ldots=\frac{d x_{n}}{P_{n}}=\frac{d_{z}}{R}$ is called as subsidiary equation

Short Answers.

1. Find the complementary function of $\left(D^{2}-9 D+8\right) y=0$
2. Find the particular integral of $\left(D^{2}-3 D+2\right) y=e^{3 x}$
3. Find the particular integral of $\left(D^{2}+9\right) y=\cos 2 x$
4. Define general solution of $P(D) y=Q(x)$
5. Define particular integer of $P(D) y=Q(x)$
6. Define Cauchy's Euler Equation?
7. Define Partial Linear Differential equation of $1^{\text {st }}$ order?
8. Find the complementary function of $\left(D^{4}-1\right) y=0$
9. Find the wronksian of y_{1}, y_{2} in $\left(D^{2}+6 D+8\right) y=3 x e^{-x}$ by using method of variation of parameters.
10. Find the subsidiary equation of $(m z-n y) p+(n x-l z) q=l y-m x$
