TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) II SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS MATHS (DIFFERENTIAL EQUATIONS) QUESTION BANK

I. Multiple Choice Questions.1. If the auxiliary equation has complex conjugate roots, then the complementary function is(a) $e^{\alpha x}(C_1 \cos\beta x + C_2 \sin\beta x)$ (b) $e^{-\alpha x}(C_1 \cos\beta x + C_2 \sin\beta x)$ (c) $e^{\beta x}(C_1 \cos\alpha x + C_2 \sin\alpha x)$ (d) $e^{-\beta x}(C_1 \cos\alpha x + C_2 \sin\alpha x)$						
2. The complementary function (a) $(C_1 + C_2 x)e^{4x} + C_3 e^{-x}$ (c) $(C_1 + C_2 x)e^{-4x} + C_3 e^x$	on of an equation hav	ing the (b) (C ₁ (d) (C ₁	roots -1, -1, 4 is + $C_2x)e^{-x}$ + C_3e^{4x} + $C_2x)e^x$ + C_3e^{-4x}		[b]	
3. The general solution of nth order non homogeneous differential equation is						
(a) $y = y_c + y_p$	(b) $y = y_c \cdot y_p$		(c) $y = y_c - y_p$	(d) $\gamma = \gamma_c \left(\frac{1}{yp}\right)$	[-]	
4. The particular integral of ((a) 1	D ² – 5D + 6)y = 0 is (b) 5		(c) 6	(d) 0	[d]	
5. The particular integral of $\frac{c}{L}$ (a) $\frac{1}{10} \cos 3x$	$\frac{\cos 3x}{(b)^{2}-1}$ is (b) $\frac{1}{10} \sin 3x$		(c) $-\frac{1}{10}\cos 3x$	(d) $-\frac{1}{10}sin3x$	[c]	
6. The complementary functi (a) $C_1 e^{x_+} C_2 e^{-x}$	on of (D ² – 1) is (b) C ₁ coshx + C ₂ sinhx		(c) Both a & b	(d) Neither a nor b	[c]	
7. The particular integral of s (a) $\frac{-x}{2a} cosax$	in α x, if f(-a ²) = 0 is (b) $\frac{x}{2a} cosax$		(c) $\frac{-x}{2a}sinax$	(d) $\frac{x}{2a}sinax$	[a]	
8. The particular integral of $\frac{1}{D}$ (a) 0	$\frac{9}{1^{2}+5D+4}$ is (b) 1		(c) $\frac{4}{9}$	(d) $\frac{9}{4}$	[d]	
9. The complementary functi (a) C ₁ cos2x + C ₂ sin2x	on of (D ² + 4)y is (b) C ₁ cosh2x + C ₂ sinh2	2x	(c) $(C_1 + C_2 x)e^{2x}$	(d) $C_1 e^{2x} + C_2 e^{-2x}$	[a]	
10. The particular integral of (a) Ax ² + Bx + C	4x2 can be written as (b) Ax ² - Bx + C	(using r	nethod of undetermin (c) Ax ² + Bx – C	ed coefficient) (c) –(Ax ² + Bx + C)	[a]	
11. If one of the solutions of differential equation is known then the second solution can be determined using[(a) Method of undetermined coefficients(b) Variation of parameters(c) Reduction of order method(d) None of these						
12. If $y_2 = y_1 \int u(x) dx$ then, u (a) $\exp \frac{\left[\int \frac{f_1(x)}{f_2(x)} dx\right]}{y_1^2}$	(x) = (b) $\exp \frac{\left[-\int \frac{f_1(x)}{f_2(x)} dx\right]}{y_1^2}$		(c) $\exp \frac{\left[\int \frac{f_2(x)}{f_1(x)} dx\right]}{y_1^2}$	(d) $\exp \frac{\left[-\int \frac{f_2(x)}{f_1(x)} dx\right]}{y_1^2}$	[b]	

13. In Cauchy euler equation, x is substituted as(a) t(b) log t(c) e^t(d) None of these

[c]

14. The two linearly indepen (a) e ^{-x} , e ^{-2x}	ident solutions of $(D^2 - 3D)$ (b) e^{-x} , e^{2x}	+ 2)y is (c) (a) e ^x , e ^{-2x}	(d) (a) e ^x , e ^{2x}	[d]				
15. If Q(x) = x + logx by cauch (a) e ^t + t	ny euler equation $Q(x)$ becomes (b) $e^t - t^2$	omes (c) e ^t . t ²	(d) te ^t	[a]				
16. In Legendre's linear equa (a) Log t	ation, ax + b is substituted a (b) e ^t	as (c) e ^{-t}	(d) None	[b]				
17. Which of the following is (a) $\frac{d^2y}{dx^2} = F(x)$	s miscellaneous differential (b) $\frac{dx}{dy} = F'(x)$	equation? (c) $\frac{d^2y}{dx^2} = f(x)$	(d) None	[c]				
18. Which of the following is (a) $\frac{\partial z}{\partial x} = p$	a partial differential equation (b) $\frac{\partial z}{\partial y} = q$	tion? (c) $\frac{\partial^2 z}{\partial x^2} = p$	(d) None	[d]				
19. The solution obtained fro (a) Complete solution	om complete integral throu (b) Particular solution	ugh assigning particular v (c) Both a & b	alues to constants is (d) None	[b]				
20. The subsidiary equation (a) $\frac{dx}{y+z} = \frac{dy}{x+z} = \frac{dz}{x+y}$ (c) $\frac{dx}{y-z} = \frac{dy}{x-z} = \frac{dz}{x-y}$	of (y + z)p + (x + z)q = x + y (b) (d)	is $\frac{dx}{(y+z)^2} = \frac{dy}{(x+z)^2} = \frac{dz}{(x+y)^2}$ None		[a]				
II. Fill in the blanks. 1. The general solution of n th order homogeneous differential equation is <u>complementary function</u> 2. The auxiliary equation of $(D^2 - 3D + 2)y$ is $\underline{m^2 - 3m + 2} = 0$ 3. The roots of $(D^2 - 5D + 6)y$ are <u>2,3</u> 4. If the roots of auxiliary equation are real then the complementary function is $\underline{C_1e_1^{m.x} + C_2e_2^{m.x} + \dots}_{e^{ax}}$								
5. The particular integral for 6. The value of $\frac{e^{2x}}{D^2+4D+3}$ is $\frac{e^{ax}}{T5}$ 7. The auxiliary equation hav 8. The complementary funct 9. The particular integral of of 10. In method of undetermin 11. If y ₁ is a known solution to 12. By substituting x = e ^t , <u>Can</u>	T(D)y = e^{ux} , T(a)≠0 is $\frac{f(a)}{f(a)}$ wing the roots 2,3 is $\frac{m^2 - 5m}{f(a)}$ ion of (D + 2) (D-2) is C_1e^{-2} differential equations depended coefficients f(D)y = $f(D)$ then y ₂ can be determined uchy-Euler equation is compared	$\frac{1+6=0}{2x} + C_2 e^{2x}$ nds on <u>Q(x)</u> by formula $y^2 = y_1 \int u(x)$ verted into linear equation	<u>dx</u> on with constant coeffi	cients.				
13. The particular integral of 14. In method of variation of <u>complementary function</u> 15. If $Q(x) = x^2$ in Cauchy-Eul	$\frac{1}{3}$ (D ² +4D + 4)y = 6e ^x is $\frac{2}{3}$ er parameters, the two lineater equation reduced to lin	rly independent solutior ear order differential equ	ns can be determined f nation then x ² becomes	rom				

16. The two linearly independent solutions of (D² +4D + 4)y are e^{-2x} , xe^{-2x}

17. Partial differential equation can be obtained by eliminating arbitrary constants or arbitrary functions involving two or more variables.

- 18. The solution of first order PDE that has two arbitrary constants is called as complete indtegral

Short Answers.

1. Find the complementary function of $(D^2 - 9D + 8)y = 0$ 2. Find the particular integral of $(D^2 - 3D + 2)y = e^{3x}$

- 3. Find the particular integral of $(D^2 + 9)y = cos2x$
- 4. Define general solution of P(D)y = Q(x)
- 5. Define particular integer of P(D)y = Q(x)
- 6. Define Cauchy's Euler Equation?
- 7. Define Partial Linear Differential equation of 1st order?
- 8. Find the complementary function of $(D^4 1)y = 0$ 9. Find the wronksian of y_1 , y_2 in $(D^2 + 6D + 8)y = 3xe^{-x}$ by using method of variation of parameters.
- 10. Find the subsidiary equation of (mz ny)p + (nx lz)q = ly mx