TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) II SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS MATHS (DIFFERENTIAL EQUATIONS) QUESTION BANK

I. Multiple Choice Questions.				
1. The solution of $\frac{dx}{dy} + \frac{x}{y} = -x^2$ is				[b]
(a) $\frac{1}{y} = cx - x \log x$	(b) $\frac{1}{x} = cy + y \log y$	(c) $\frac{1}{x} = cx + x \log y$	(d) $\frac{1}{y} = cx + x \log y$	
2. The solution of $\frac{dy}{dx} + 1 = e^{x+y}$ is				[a]
(a) e ^{-(x+y)} +x+c=0	(b) e ^{-(x+y)} -x+c=0	(c) e ^{x+y} +x+c=0	(d) e ^{x+y} -x+c=0	
3. The solution of the differential equation $xy^2 dy - (x^3 + y^3) dx = 0$ is				[b]
(a) y³=3x³+c4. Which of the followin	(b) y ³ =3x ³ log(cx) g is an exact differentia	(c) y ³ =3x ³ +log(cx) al equation	(d) γ ³ +3x ³ =log(cx)	[d]
(a) $\frac{dy}{dx} + ys \sec x = \tan x$	(b) p ² +2pycotx=y ²	(c) x-yp=ap ²	(d) (x2-2xy-y2)dx=	
5. The condition for exactness for exact differential equation is				[a]
(a) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	(b) $\frac{\partial y}{\partial M} = \frac{\partial x}{\partial N}$	(c) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$	(d) $\frac{\partial x}{\partial M} = \frac{\partial y}{\partial N}$	
6. Integrating factor of d	$\left(\frac{1}{rw}\right)$	·		[c]
(a) $\frac{xdy+ydx}{x^2y^2}$	(b) $\frac{-xdy-ydx}{x^2y^2}$	(c) $\frac{-xdy+ydx}{x^2y^2}$	(d) $\frac{xdy-ydx}{x^2y^2}$	
7. If Mx –Ny \neq 0 in Mdx+Ndy=0 then the required integrating factor is				[d]
(a) Mx + Ny	(b) $\frac{1}{Mx + Ny}$	(c) Mx – Ny	(d) $\frac{1}{Mx - Ny}$	
8. Simultaneous differer	itial equations can be s	olved using		[c]
(a) Lagrange's multipliers method (b) Grouping method				
(c) Both (a) and (b)		(d) Neither (a) nor (b)		
9. differential equations are mostly used in Physics and Engineering				[a]
(a) Exact	(b) Linear	(c) Clairauts	(d) None	
10. Pdx+Qdv+ Rdz=0 is f	orm of	equation	()	[d]
(a) Linear differential	(b) Homogeneous	(c) Clairauts	(d) Total differential	
11. The differential equa	ation $p^2 + 2py \cot x = y^2$	is solvable for		[c]
(a) x	(b) y	(c) p	(d) None of the above	
12. The general solution	of Clairaut's equation	is	· · ·	[a]
(a) $y = cx + f(c)$	(b) $y = cx + f'(c)$	(c) $y = cx + f''(c)$	(d) None of the above	L - J
13. If the equation $F\left(\frac{dy}{dx}, \frac{y}{x}\right) = 0$ is solvable for $\frac{y}{x}$ then				[b]
(a) $\frac{dx}{x} = \frac{f'(p)dp}{p+f(p)}$	(b) $\frac{dx}{x} = \frac{f'(p)dp}{p-f(p)}$	(c) $\frac{dx}{x} = \frac{f(p)dp}{p+f'(p)}$	(d) $\frac{dx}{x} = \frac{f(p)dp}{p-f'(p)}$	
14. Which of the following equations represents law of natural growth?				[b]
(a) A(t) = Ce ^{-kt}	(b) A(t) = Ce^{kt}	(c) A(t) = $Ce^{-k/t}$	(d) $A(t) = Ce^{k/t}$	
15. If the division of repr	oducting cells is very s	low with respect to tin	ne, then	[a]
(a) $\frac{dV}{dt} = (ke^{-at})V$	(b) $\frac{dV}{dt} = (e^{-at}V)$	(c) Either (a) or (b)	(d) Niether (a) nor (b)	
at 16. The half life 'H' of a radioactive substance obtained from two measurements $v = v(t_1)$ and $v = v(t_2)$ is				
[h]				
(a) H = $\frac{(t_2+t_1)log_2}{\log(y_1y_2)}$	(b) H = $\frac{(t_2+t_1)log2}{log(\frac{y_1}{y_2})}$	(c) H = $\frac{(t_2 - t_1)log_2}{\log(y_1 y_2)}$	(d) H = $\frac{(t_2 - t_1) log 2}{log(\frac{y_1}{y_2})}$	[~]

The equation for determining the age of fossil is A(t) = [c] (a) (Initial amount) $e^{\frac{0.693147181}{T}t}$ (c) (Initial amount) $e^{\frac{-0.693147181}{T}t}$ (b) (Initial amount) $e^{\frac{0.693147181}{t}}T$ (d) (Initial amount) $e^{\frac{-0.693147181}{t}}T$ 18. If the amount is compounded continuously per annum then effective interest rate is, [a] (b) $e^r + 1$ (a) $e^r - 1$ (c) e^{r-1} (d) e^{r+1} 19. The orthogonal trajectories of r = 2acos θ is [b] (a) $r = 2c \sec \theta$ (b) r = 2c sin θ (c) $r = 2c \cot \theta$ (d) $r = 2c \csc \theta$ 20. The amount compounded annually per annum is given as [d] (c) $A = p(1-r)^{t}$ (d) $A = p(1+r)^{t}$ (b) A = p(1+r)t(a) A = p(1-r)tII. Fill in the blanks. 1. The solution of differential equation of the form f(x)dx + g(y)dy = 0 is $\int f(x)dx + \int g(y)dy = 0$ 2. The equation $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$ is a <u>Humogeneous differential equation</u> 3. The integrating factor of $\frac{dy}{dx} - \frac{y}{x} = logx$ is $\frac{1}{x}$ 4. An equation of the form $\frac{dy}{dx} + py = Qy^n$ is known as <u>Bernoulli's equation</u> 5. Exact differential equation is also known as Total differential equation 6. A given differential equation can be converted in to a exact differential equation by multiplying with a integrating factor 7. Exact differential equation is in the form of Mdx + Ndy = 08. Integrating factor of $d\left(\frac{e^x}{v}\right) = \frac{ye^x dx - e^x dy}{\frac{v^2}{v^2}}$ 9. $\frac{ydx - xdy}{v^2}$ is integrating factor of $\frac{d(\frac{x}{v})}{v}$ 10. If an exact differential equation is homogenous, then integrating factor is $\frac{1}{MX+NY}$ if Mx +Ny \neq 0 11. The differential equation of the form $y = xf_1(p)+f_2(p)$ is known as <u>langrang's equation</u> 12. The Clairaut's equation of the form is y = px + f(p)13. The general solution of p = log(px-y) is c = log(cx-y)14. The rate of disintegration proportional to the amount A is $\frac{dA}{dx} = -kA$ 15. Gompertzian relation is given as $\underline{V}_0 e^{\frac{\kappa}{a}(1-e^{-at})}$ 16. During the decay, uranium 238 is converted into Radium 226 17. Half life of carbon-14 is 5568 years 18. The amount compounded continuously per annum is $\underline{A} = \underline{Pe}^{n}$ 19. The curve intersecting every member of family of curves at $\alpha \neq \frac{\pi}{2}$ is called as <u>oblique trajectory</u> 20. The orthogonal trajectories for the family of circles is family of straight lines Short Answers. 1. Define differential equation? 2. Define order of differential equation? 3. Define Homogenous Differential Equation ? 4. Define Linear differential equation ? 5. Define Total differential equation ? 6. Define first order but not of first degree differential equation ?

- 7. Define Clairaut's Equation ?
- 8. Define orthogonal trajectory of family of curves?
- 9. Find the solution of $\frac{dy}{e^y} = \frac{dx}{e^x}$?

10. Find the integrating factor of
$$\frac{dx}{dy} = \frac{x}{y} + 2y^2$$