Faculty of Science

B.Sc (Mathematics) II Year, CBCS - III Semester Backlog
 Examinations -June/July, 2022
 PAPER: Real Analysis

Time: 3 Hours

Section-A

I. Answer any eight of the following questions.
(Max Marks: 80)
($8 \times 4=32$ Marks)

1. Write out the first five terms of the following sequences.
(a) $s_{n}=\frac{1}{3 n+1}$
(b) $b_{n}=\frac{3 n+1}{4 n+1}$
(C) $c_{n}=\frac{n}{3^{n}}$
(d) $d_{n}=\sin \left(\frac{n \pi}{4}\right)$
2. Prove $\lim \frac{1}{n^{2}}=0$
3. Prove that convergent sequences are Cauchy sequences.
4. Let $f(x)=2 x^{2}+1$ for $x \in R$. Prove that f is continuous on R by using ϵ, δ definition.
5. Prove that if f is continuous at x_{0} and g is continuous at $f\left(x_{0}\right)$, then the composite function g of is continuous at x_{0}.
6. Prove that if f and g be real-valued functions that are continuous at x_{0} in R. Then
(i) $f+g$ is continuous at x_{0};
(ii) $f g$ is continuous at x_{0};
7. Prove that if f is differentiable at a point a, then f is continuous at a.
8. State and prove Rolle's theorem.
9. Apply L'Hospital's rule and find the limits for
(a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{3 x}}$
10. Prove that if f is a bounded function on $[a, b]$, and if P and Q are partitions of $[a, b]$, then $L(f, P) \leq U(f, Q)$.
11. Prove that every continuous function f on $[a, b]$ is integrable.
12. Prove that if f integrable functions on $[a, b]$, and let c be a real number. Then show that $c f$ is integrable and $\int_{a}^{b} c f=c \int_{a}^{b} f$

Section - B

II. Answer the following questions.

$$
\text { (} 4 \times 12=48 \text { Marks) }
$$

13. (a) (i) Prove that every monotone bounded sequence is convergent.
(ii) Prove that if a sequence $\left(s_{n}\right)$ converges to s, then every subsequence of it also converges to s.
(OR)
(b) State and prove Boltzano Weiestrass Theorem.
14. (a) Let f be a one-to-one continuous function on an interval I.

Then f is strictly increasing [$x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$] or strictly decreasing $\left[x_{1}<x_{2}\right.$ implies $\left.f\left(x_{1}\right)>f\left(x_{2}\right)\right]$
(OR)
(b) If f is continuous on a closed interval $[a, b]$, then f is uniformly continuous on $[a, b]$.
15. (a) State and prove Lagrange's mean value theorem.
(OR)
(b) Let f and g be functions that are differentiable at the point ' a ' then prove that each of the functions $c f$ [c a constrant $], f+g, f g$ and f / g is also differentiable at a , if $g(a) \neq 0$.
16. (a) Prove that a bounded function f on $[a, b]$ is integrable if and only if for each $\epsilon>0$ there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$
(OR)
(b) State and prove first fundamental theorem of Integral calculus.

Faculty of Science

B.Sc(Mathematics)II-Year, CBCS-III Semester Regular Examinations -Jan, 2023
 PAPER: Real Analysis

Time: 3 Hours
Max Marks: 80

Section-A

I. Answer any eight of the following questions

$$
\text { (} 8 \times 4=32 \text { Marks) }
$$

1. Define limit of a sequence and Cauchy sequence.
2. Prove Lim sup $\left|s_{n}\right|=0$ if and only if $\operatorname{Lim} s_{n}=0$.
3. Let $\left(s_{n}\right)=(0,1,2,1,0,1,2,1,0,1,2,1$, \qquad .) and $\left(t_{n}\right)=(2,1,1,0,2,1,1,0,2,1,1,0$,
\qquad .) be two sequences then find $\operatorname{Lim} \sup \left(s_{n}+t_{n}\right)$ and $\operatorname{Lim} \inf \left(s_{n}+t_{n}\right)$.
4. Prove $f(x)=|x|$ is continuous function on \mathbb{R}.
5. If $f(x)$ is continuous at x_{0} then show that $|f(x)|$ is continuous x_{0}.
6. Let $f(x)=4$ for $x \geq 0, f(x)=0$ for $x<0$ and $g(x)=x^{2} \forall x$. Determine $f+g, f . g$.
7. Let $f(x)=x^{2}$ for $x \geq 0, f(x)=0$ for $x<0$. Show that f is differentiable at $x=0$.
8. Write the statements of Rolle's theorem and generalized mean value theorem.
9. Prov that every differentiable function at $x=a$ is continuous at $x=a$.
10. Define Riemann integral of a function.
11. Find lower and upper Darboux integrals for $f(x)=1$ for $x \in \mathbb{Q}$ and $f(x)=0$
for $x \in \mathbb{R}-\mathbb{Q}$ on the interval $[\mathrm{a}, \mathrm{b}]$.
12. Let f be integrable function on [a, b] and $c \in \mathbb{R}$ then show that $c f$ is integrable.

Section-B

II. Answer the following questions
13. (a)(i) Prove that every Cauchy sequence is bounded.
(ii) Test the convergence of the series $\sum \frac{n-1}{n^{2}}$
(OR)
(b) State and prove Ratio test in infinite series.
14. (a)(i) Show that $f(x)=3 x+11$ is uniformly continuous on \mathbb{R}.
(ii)Prove that if f is continuous on [a,b] then f is uniformly continuous on [a,b] (OR)
(b) Prove that every continuous function on [a, b] is bounded on [a, b].
15. (a) State and prove Lagrange's mean value theorem.
(OR)
(b)(i) Find $\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}$
(ii) Find $\lim _{x \rightarrow 0} \frac{x^{3}}{\sin x-x}$
16. (a) State and prove $1^{\text {st }}$ fundamental theorem of calculus.
(OR)
(b) Prove that every continuous function f on $[\mathrm{a}, \mathrm{b}]$ is integrable.

Faculty of Science
B.Sc (Mathematics) II-Year, CBCS -III Semester Backlog Examinations -June, 2023

PAPER: Real Analysis
Time: 3 Hours

Section-A

I. Answer any EIGHT of the following questions

1. By using definition of the limit of a sequence prove that $\lim _{n \rightarrow \infty} \frac{2 n-1}{3 n+2}=\frac{2}{3}$
2. Calculate $\sum_{n=1}^{\infty}(2 / 3)^{n}$
3. Define sub sequence and Infinite series.
4. Discuss the continuity of the function $g(x)=\left\{\begin{array}{c}-1 \text { for } x<0 \\ 0 \text { for } x=0 \\ 1 \text { for } x>0\end{array}\right.$ at $x_{0}=0$.
5. Define continuous and uniform continuous functions.
6. If a function $f(x)$ is continuous at x_{0} then show that $|f(x)|$ is continuous at x_{0}.
7. Prove $|\cos x-\cos y| \leq|x-y| \forall x, y \in \mathbb{R}$.
8. Prove that every differentiable function is continuous at a point x_{0}.
9. Find $\lim _{x \rightarrow 0}(1+2 x)^{1 / x}$
10. Let $f(x)=\left\{\begin{array}{l}x \text { for all } x \in \mathbb{Q} \\ 0 \text { for all } x \in \mathbb{R}-\mathbb{Q}\end{array}\right.$ then calculate upper and lower Darboux sums for $f(x)$ on the interval $[0, \mathrm{~b}]$.
11. If f and g are integrable functions on [a,b] and $f(x) \leq g(x) \forall x \in[\mathrm{a}, \mathrm{b}]$ then show that $\int_{a}^{b} f(x) \leq \int_{a}^{b} g(x)$.
12. Define Riemann integral.

Section-B

II. Answer the following questions
13.(a)(i) State and prove squeeze theorem for sequences.
(ii) Prove $\lim _{n \rightarrow \infty}(a)^{1 / n}=1$ for $a>0$.
(OR)
(b) State and prove Root-test for infinite series.
14. (a) (i) Prove that the function $f(x)=x^{2}$ is continuous at $x_{0}=2$ by using ($\left.\varepsilon, \delta\right)$ property.
(ii) Prove $|x|$ is continuous function on \mathbb{R}.
(OR)
(b) (i) Prove every continuous function defined on [a,b] is uniform continuous.
(ii) Let $f(x)=\sqrt{4-x}$ for $x \leq 4$ and $g(x)=x^{2}$ for all $x \in \mathbb{R}$ then find $f \circ g(0), g \circ f(0)$ and $f \circ g(1)$.
15.(a) state and prove Rolle's theorem.
(b) (i) Find $\lim _{x \rightarrow 0} \frac{1+\cos x}{e^{x}-1}$
(ii) Find $\lim _{x \rightarrow 0} \frac{e^{2 x}-\cos x}{x}$
16.(a) Prove that every monotonic function $f(x)$ on [a,b] is integrable.
(OR)
(b) State and prove fundamental theorem of calculus II.

