Faculty of Science

B. Sc (Mathematics) I-Year, CBCS -I Semester Backlog Examinations, January 2021 PAPER: DIFFERENTIAL AND INTEGRAL CALCULUS
Time: 2 Hours
Max Marks: 80
I. Answer Any FOUR from the following questions

1. If $4=\operatorname{sim}^{-1} \frac{x^{2}+y^{2}}{x+y}, S / T x \frac{\partial u}{\partial x}+y \frac{\partial v}{\partial y}=\tan 4$
2. If $4=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then $\mathrm{S} / \mathrm{P}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} 4=\frac{-9}{(x+y+z)^{2}}$
3. Find maximum value of $f(x, y, z)=x^{a} y^{b} z^{c}$ subject to the condition

$$
x+y+z=1 \text {, where } a, b, c \text { are positive integers. }
$$

4. Expand the function $f(x, y)=x^{2}+x y-y^{2}$ by tan cos threesome in powered

$$
\text { of }(x-1) \text { and }(y+2)
$$

5. If a curve is defined by the equation $x=f(t)$ and

$$
y=\emptyset(t) \text {, then } P / T \quad p=\frac{\left(x^{1^{2}}+y^{1^{2}}\right)^{3 / 2}}{x^{1} y^{11}-4^{1} x^{11}} \text { where denote differentiation } \mathrm{w}, \mathrm{r}+\mathrm{t} \text {. }
$$

6. For a cycloid $x=a(t+\sin t), y=(1-\cos t)$, prove that $e=4 a \cos \left(\frac{1}{2} t\right)$
7. Find the volume of the solid obtained by revolving the log of the curve $a^{2} y^{2}=x^{2}(2 a-x)(x-a)$ about ' x ' a is.
8. S / T the length of the curve $x^{2}=a^{2}\left(1-e^{y / a}\right)$ measured from

$$
0(0,0) \text { to } p(x, y) \text { is alog }\left(\frac{a+x}{a-x}\right)-x
$$

Faculty of Science

B. Sc (Mathematics) I-Year, CBCS -I Semester
 Backlog Examinations -June/July, 2022
 PAPER: Differential and Integral Calculus

Time: 3 Hours

Section-A

I. Answer any eight from the following
($8 \times 4=32$ Marks)

1. If $u=x^{2} \tan ^{-1} \frac{y}{x}-y^{2} \tan ^{-1} \frac{x}{y}, x y \neq 0, p / t \frac{\partial^{2} u}{\partial x \partial y}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
2. Find second order partial derivatives of e^{x-y}
3. Verify Evler's their some for $z=\left(x^{2}+x y+y^{2}\right)^{-1}$
4. If $H=f(y-z, z-x, x-y), p / t \frac{\partial H}{\partial x}+\frac{\partial H}{\partial y}+\frac{\partial H}{\partial z}=0$
5. Find the maximum \& minimum values of the function $f(x)=8 x^{5}-15 x^{4}+10 x^{3}$
6. If $z=x^{2}+y^{2}, x=a t^{2}$ and $y=2 a t$, then evaluate $\frac{d z}{d t}$
7. Find the envelope of the straight lines $x \cos \alpha+y \sin \alpha=l \sin \alpha \cos \alpha, \alpha$ being the parameter.
8. Find the radium of curvature at the organ of the curve

$$
x^{3}-2 x^{2} y+3 x y^{2}-4 y^{3}+5 x^{2}-6 x y+7 y^{2}-8 y=0
$$

9. Find the envelope of the family of curve $y=m x+a m^{3}$
10. Find the length of the area of the curve $y=\log \sec x$ from $x=0$ to $x=\pi / 3$
11. Find the perimeter of the cardioids $r=a(1-\cos \theta)$
12. Find the length of the curve $y=x^{3 / 2}$ from $x=0$ to $x=4$

Section-B

II. Answer the following questions ($4 \times 12=48$ Marks)
13. (a) If $z=f(x, y)$ is a homogenous function of x, y of degree n , then p / t

$$
\begin{equation*}
x \frac{\partial^{2} u^{2}}{\partial x^{2}}+2 x y \frac{\partial^{2} v}{\partial x \partial y}+y \frac{\partial^{2} u}{\partial y^{2}}=n(n-1) z \tag{OR}
\end{equation*}
$$

(b) If $u=\log \left(x^{2}+y^{3}+z^{3}-\right) x y z$, then s/t $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$
14. (a) Expand the function $f(x, y)=x^{2}+x y-y^{2}$ by Taytors their some in powered of $(x-1)$ and $(y+2)$
(OR)
(b) In a plane tangle, find the maximum value of $u=\cos A \cos B \cos C$ where A, B, C are the angles of the angle.
15. (a) For a cycloid $x=a(t+\sin t), y=(1 \cos t), p / t e=4 a \cos \left(\frac{1}{2} t\right)$
(OR)
(b) Find the evolutes of the hyperbola $2 x y=a^{2}$
16. (a) Find the volume of the solid obtained by revolting one are of the cycloid $x=a(0+\sin \theta), y=a(1+\cos \theta)$
(b) Find the volume of the solid obtained by revolting the loop of the curve $a^{2} y^{2}=x^{2}(2 a-x)(x-a)$ about $x-$ is.

Faculty of Science

B.Sc (Mathematics)I-Year, CBCS-I Semester Backlog Examinations -June, 2023

PAPER: Differential and Integral Calculus

Time: 3 Hours
Max Marks: 80

Section-A

I. Answer any eight of the following questions

$$
\text { (} 8 \times 4=32 \text { Marks) }
$$

1. If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$
2. $z=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ then find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$
3. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.
4. If $H=f(y-z, z-x, x-y)$ prove that $\frac{\partial H}{\partial x}+\frac{\partial H}{\partial y}+\frac{\partial H}{\partial z}=0$
5. If $u=x^{2}-y^{2}, x=2 r-3 s+4, y=-r+8 s-5$ find $\frac{\partial u}{\partial r}$
6. Find the radius of curvature of $y=4 \sin x-\sin 2 x$ at $P=\left(\frac{\pi}{2}, 4\right)$
7. Find the radius of curvature of $y=x e^{-x}$ at its maximum point.
8. By Newton's method find the radius of curvature of $y=x^{4}-4 x^{3}-18 x^{2}$ at $(0,0)$
9. Find radius of curvature of $s=4 a \operatorname{Sin} \frac{\psi}{3}$ at $P=\left(\frac{\pi}{2}, 2 a\right)$
10. Find the length of the of the arc of the curve $y=\log \sec x$ from $x=0$ to $x=\frac{\pi}{3}$
11.Find the length of the arc of the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ from $\theta=0$ to $\theta=\pi$
11. Find the perimeter of the cardioide $r=a(1-\cos \theta)$ from $\theta=0$ to $\theta=\pi$

Section-B

II. Answer the following questions
13.(a) (i) State and Prove Euler's theorem for Homogeneous functions.
(ii) If $x^{y}=y^{x}$ then find $\frac{\partial y}{\partial x}$

> (OR)
(b) If $f(x, y)=\left\{\begin{array}{cc}x^{2} y \\ x^{2}+y^{2} & \\ 0, & x^{2}+y^{2} \neq 0 \\ 0, y)=(0,0)\end{array}\right\}$ then show that $f_{y x}(0,0) \neq f_{x y}(0,0)$
14.(a) If $z=e^{u} f(v), u=a x+b y, v=a x-b y$, then show that $b \frac{\partial z}{\partial x}+a \frac{\partial z}{\partial y}=2 a b z$ (OR)
(b) Expand $e^{x} \log (1+y)$ in powers of x and y
15.(a) Find the centre and circle of curvature at the point $P\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x}+\sqrt{y}=\sqrt{a}$
(OR)
(b) Find the evolute of the hyperbola $2 x y=a^{2}$
16. (a) Prove that the loop of the curve $x=t^{2}, y=t-\frac{t^{5}}{3}$ is of length $4 \sqrt{3}$
(OR)
(b) Find the volume of the solid obtained by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x-axis.

