TELANGANA UNIVERSITY

S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) III SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS MATHEMATICS (REAL ANALYSIS) QUESTION BANK

I. Multiple choice questions.

1. The derivative of function $g(x)=x^{2}$ is $g^{\prime}(x)=$
[d]
(a) $x^{2}+1$
(b) x
(c) 0
(d) $2 x$
2. If $f(x)=x^{n}$ then $f^{\prime}(x)=$
(b) $x^{1 / 2}$
(d) $n x^{n-1}$
(c) $n \cdot x^{n}$
(a) $x^{n}-a^{n}$
[b]
3. $\lim _{x \rightarrow a} x^{k}=$
(c) k^{2}
(d) a
(a) k
(b) a^{k}
4. If f and g are functions that are differentiable at point 'a' then $(f+g)^{\prime}(a)=$
[d]
(a) $f^{\prime}(a) g^{\prime}(a)$
(b) $f^{\prime}(a) g(a)$
(c) $f^{\prime}(a)-g^{\prime}(a)$
(d) $f^{\prime}(a)+g^{\prime}(a)$
5. If $f(x)=\sin \left(x^{3}\right)$ then $f^{\prime}(x)=$
(b) $\cos \left(x^{3}\right)$
(c) $3 \cos x^{3}$
(d) $3 x \cos x$
(a) $\left(3 x^{2}\right) \cos \left(x^{3}\right)$
(c) Bounded
(d) Continuous
(a) Strictly increasing
(b) Strictly decreasing
6. The function cosx on $[0, \pi]$ is
(c) Differentiable
(d) Strictly decreasing
(a) Increasing
(b) Continuous
7. If $f(y)=y^{1 / n}, n$ is even then domain of f is
[b]
(a) $(0,0)$
(b) $[0, \infty)$
(c) $(0,00)$
(d) $(-1,0)$
8. $\lim _{x \rightarrow 0^{+}} \log x=$
[a]
(a) $-\infty$
(b) 0
(c) 1
(d) None
9. The limit $\lim _{x \rightarrow \infty}^{\lim }\left[1-\frac{1}{x}\right]^{x}$ is indeterminate of the form
[c]
(a) 0°
(b) ∞^{0}
(c) 1^{∞}
(d) $\frac{0}{0}$
10. The necessary and sufficient condition for Riemann integrability of bounded function f on $[a, b]$ with a partition p . for every $\varepsilon>0$ is,
(a) $0 \leq U(P, f)-L(P, f)<\varepsilon$
(b) $0 \leq U(P, f)-L(P, f)>\varepsilon$
(c) $U(P, f)-L(P, f)=\varepsilon$
(d) None of these
11. Let f is a bounded function defined on a bounded interval $[a, b]$, then corresponding to any partition P of $[a, b]$
(a) $L(f, P) \leq U(f, P)$
(b) L(f, P) U(f. P)
(c) Both (a) and (b)
(d) Neither (a) nor (b)
12. Let f be a bounded function defined on $[a, b]$ and P be the partition on $[a, b]$ and Q is refinement of P. then
(a) $\mathrm{L}(\mathrm{Q}, \mathrm{f}) \geq \mathrm{L}(\mathrm{P}, \mathrm{f})$
(b) $L(Q, f) \leq L(P, f)$
(c) $U(Q, f) \geq U(P, f)$
(d) None of these
13. Let f be a bounded function on $[a, b]$ and p be the partition of $[a, b]$ and Q is refinement of p then
(a) $\mathrm{L}(\mathrm{Q}, \mathrm{f}) \leq \mathrm{L}(\mathrm{P}, \mathrm{f})$
(b) $U(Q, f) \leq U(P, f)$
(c) $U(Q, f) \geq u(P, f)$
(d) None of these
14. If f is Riemann integrable on $[a, b]$, then
[d]
(a) $\left|\int_{a}^{b} f(x) d x\right|=\int_{a}^{b}|f(x)| d x$
(b) $\left|\int_{a}^{b} f(x) d x\right| \geq \int_{a}^{b}|f(x)| d x$
(c) $\left|\int_{a}^{b} f(x) d x\right| \neq \int_{a}^{b}|f(x)| d x$
(d) $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$
15. Let f be a bounded function defined on [$a, b]$, then f^{\prime} is Riemann integrable if and only if
(a) $\int_{\bar{a}}^{b} f \leq \int_{a}^{\bar{b}} f$
(b) $\int_{\bar{a}}^{b} f \geq \int_{a}^{\bar{b}} f$
(c) $\int_{\bar{a}}^{b} f=\int_{a}^{\bar{b}} f$
(d) $\int_{a}^{\bar{b}} f=-\int_{\bar{a}}^{b} f$
16. Let f, g be bounded functions on $[a, b]$ and let P be partition on $[a, b]$, then,
(a) $U(P, f+g) \leq U(P, f)+u(P, g)$
(b) $U(P, f+g) \geq U(P, f)+U(P, g)$
(c) $U(P, f+g)=U(P, f)+U(P, g)$
(d) $L(P, f+g) \leq L(P, f)+L(P, g)$
17. Let f be a continuous function on $[\mathrm{a}, \mathrm{b}]$ and f be a differentiable function on $[\mathrm{a}, \mathrm{b}]$ such that $\phi(x)=f(x) \forall X \in[a, b]$ then
[b]
(a) $\int_{a}^{b} f(x) d x=\phi(a)-\phi(b)$
(b) $\int_{a}^{b} f(x) d x=\phi(b)-\phi(a)$
(c) $\int_{a}^{b} f(x) d x=\phi(a)+\phi(b)$
(d) None of these
18. If f be a bounded function on $[a, b]$ and if P, Q are partitions of $[a, b], P \subseteq Q$ then
(a) $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$
(b) $L(f, P) \geq L(f, Q) \leq U(f, Q) \geq U(f, P)$
(c) $L(f, P) \leq L(f, Q) \geq U(f, Q) \geq U(f, P)$
(d) $L(f, P) \geq L(f, Q) \geq U(f, Q) \geq U(f, P)$
19. If f and [f] are integrable on [a,b], then
[b]
(a) $\left|\int_{a}^{b} f\right| \geq \int_{a}^{b}(f)$
(b) $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$
(c) $\left|\int_{a}^{b} f\right|=\int_{a}^{b}|f|$
(d) None of these
II. Fill in the Blanks
20. The domain of ' f ' is the set of points at which f is differentiable.
21. If f is differentiable at a point a, then f is continuous at 'a'.
22. If f and g are functions that are differentiable at the point 'a' then ($c f)^{\prime}(a)=\underline{c . f}{ }^{\prime}(a)$
23. If x_{0} and y_{0} are both end point of $[a, b]$, then f is a function.
24. If f is a differentiable function on an interval (a, b) then f is strictly increasing if $\underline{f^{\prime}(x)>0}$
25. The form of $R_{n}(x)=\frac{(x-y)^{n-1}}{(n-1)!} f^{(n)}(y) . x$ is known as cauchy's form of remainder
26. The derivative of $f(x)=x+2$ at $x-a$ is $\underline{1}$
27. If $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\frac{1}{2}$ then composite function $(\mathrm{fog}) \mathrm{x}=-\sin \frac{1}{x}$
28. ${ }_{n \rightarrow \infty}^{\lim }\left[1-\frac{1}{n}\right]^{n}=\underline{e^{-1}}$
29. The limit ${ }_{n \rightarrow 0^{+}}^{\lim } X^{x}$ is of the indeterminate form $\underline{0^{0}}$
30. If P and Q are two partitions of a closed and bounded interval [$a, b]$, then Q is called refinement of P If $Q \supset P$
31. If P_{1} and P_{2} be two partitions on [a,b] and $P=P_{1} U P_{2}$, then p is called common refinement of P_{1} and P_{2}
32. Let f be a real valued bounded function defined on $[a, b]$ and f is called Riemann integrable on $[a, b]$ If $\int_{a}^{b} f=\int_{a}^{b} f$
33. The lower Riemann integral of f over $[a, b]$ is supremum of $L(P, f)$ over all partitions, $P \in[a, b]$.
34. If $f:[a, b] \rightarrow R$ is a bounded function, then $L(P,-f)=\underline{-U(P, f)}$
35. The upper Riemann integral of f over $[a, b]$ is the infimum of $U(P, f)$ over all partitions $P \in[a, b]$.
36. Let f be a real valued bounded function on $[a, b]$ then, the lower Riemann integral of f cannot exceed the upper Riemann integral of f over $[a, b]$
37. A function $F(x)$, whose derivative $F^{\prime}(x)=f(x)$ is called an anti-derivative of $f(x)$.
38. Let f be continuous on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{F}(\mathrm{x})=\int_{a}^{x} f(t) d t \forall x \in[a, b]$ then $\mathrm{F}^{\prime}(\mathrm{x})=\underline{\mathrm{f}}(\mathrm{x}) \forall x \in[a, b]$
39. Let f be Riemann integrable on [a, b] and ϕ be a differentiable function on [a, b] such that $\phi^{\prime}(x)=f(x)$ $\forall x \in[a, b]$, then $\int_{a}^{b} f(x) d x=\underline{(\mathrm{b})-\text { (a) }}$
