TELANGANA UNIVERSITY S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) **I SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS** MATHEMATICS QUESTION BANK

I. Multiple choice questions.				
1. Envelope of the system o	f circles $(x-\alpha)^2 + y^2 = 4\alpha$ is			[a]
a. $y^2 - 4x - 4 = a$	b. $y^2 + 4x - 4 = a$	c. $y^2 - 4x + 4 = a$	d. $y^2 + 4x + 4 = a$	
2. Locus of center of curvature is known as				[c]
a. Circle of curvature	b. Chord of curvature	c. Evolute	d. Envelope	
3. The radius of curvature at (x,y) of the curve $y = c \cosh\left(\frac{x}{c}\right)$ is				[a]
a. y/c	b. y ² /c	c. y³/c	d. cy	
4. Radius of curvature of the c	surve $y = e^x$ at the point (0,1) is			[b]
a. $2\sqrt{2}$	b. $3\sqrt{2}$	c. 0	d. None of these	
5. The radius of curvature of the origin, if X-axis is the tangent at the origin, is given by				[d]
a. $\sum_{x \to 0}^{Lim} \frac{x^2}{2y}$	b. $\sum_{x \to 0}^{Lim} \frac{x^2}{y}$	$c. \sum_{x \to 0}^{Lim} \frac{y^2}{x}$	d. $\frac{y^2}{y^2}$	
$\sum_{x\to 0}^{n-1} 2y$	$x \to 0$ y	$x \to 0 \mathcal{X}$	d. $\frac{y^2}{x \to 0} \frac{y^2}{2x}$	
6. The angle between the radius vector and tangent for the curve $r = ae^{\theta \cot \alpha}$ is				[a]
2 0	b. $2lpha$	c. $\frac{\alpha}{2}$	d. $\frac{\alpha}{4}$	
a. α	\mathbf{D} . 2α	$c. \frac{1}{2}$	u. <u></u> 4	
7. The perimeter of the cardio	ids $r = (1 + \cos \theta)$ is			[c]
a. 4a	b. 4πa	c. 8a	d. 8πa	
8. The circle $x^2+y^2=a^2$ in positive quadrant is rotated about y-axis, the volume generated is [6]				
а. πа ³	b. 2πa ³	c. $\frac{2}{3}\pi a^{3}$	d. $\frac{4}{3}\pi a^{3}$	
9. The surface area of the solid of revolution of the circle $x^2+y^2=a^2$ about the diameter is				[]
a. πa^2	b. 2πa ²	с. Зла ²	d. 4πa²	
10. The surface area of a cone a. $\pi r^2 sin \alpha$	whose semi-vertical angle is α is b. πr ² cosecα	s c. πr²cosα	a. πr²secα	[]
a. Iti sinu	D. AT COSECU	c. ni cosu	a. Iti secu	
II. Fill in the blanks.				
1. The reciprocal of the curvature at that point is defined as the <u>Radius of curvature</u>				
2. The evolute of a curve is the <u>envelope</u> of its normals.				
3. The whole length of the evolute of the asteroid x = $a\cos^3\theta$, y = $a\sin^3\theta$ is <u>12a</u>				
4. If $r = a \sin \theta$ then P at the pole is <u>na/2</u>				
 The positive direction of the normal obtained by rotating the positive direction of the <u>Tangent</u> The process of determining the tength of arc of a plane curve is known as <u>Rectification</u> 				
7. The perimeter of asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ is <u>6a</u>				
8. The length of the arc of the equiangular spiral $r = a e^{\theta cot\alpha}$ between the points for which the radii vectors are r_1 and r_2				
is <u>(r₂-r₁)secα</u>				
9. The length of one arc of cycloid x = a(θ -sin θ), y = a(1-cos θ) is <u>8a</u>				
10. The surface area of the solid generated by revolving the asteroid x = $a\cos^3 t$, y = $a\sin^3 t$ about the X-axis is $\frac{12\pi a^2}{5}$				
11. If $x = a(t+sint)$ and $y = a(1-cost)$ then unital is $\frac{tan t}{2}$				
12. The envelope of the family of straight lines $y = mx + unital is \frac{x^2 = 4ay}{a}$				
13. The chord of curvature passing through the pole and parallel to X-axis $2 \int \sin 4$				
14. For contision equation is $\int (1+y_1^2)^{3/2}$				

14. For cartision equation is $\int \frac{(1+y_1^2)^{3/2}}{y_2}$ 15. In the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Radius of curvature at the end of major axis is equal to semi lactus rectum $\frac{b^2}{a}$

16. Radius of the curvature $r^m = a^m \cos \theta$ is $\int = \frac{a^m}{(m+1)r^{m-1}}$

17. The equation y = f(x) is rotated about the straight line x = a between y = c & y = d. The volume so formed is $\pi \int_{a}^{d} (a-x)^2 dy$

18. The surface of revolution for the equation of curve x = f(t) revolves about X-axis between $t = t_1 \& t = t_2$ is

$$2\pi \int_{t_1}^{t_2} y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

19. The length of the arc of the catenary $y = c \cosh \frac{x}{c}$ from x = 0 to x = a is given by $\int_{0}^{a} \cosh \frac{x}{c} dx$ 20. The parameter of asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ is <u>6a</u>

III. Short answer questions.

- 1. Write the formula for the chord of curvature through the pole.
- 2. Define evolute and involute.

3. Find y2 if
$$y = c \cosh\left(\frac{x}{c}\right)$$

4. Convert the parametric equation to Cartesian form x = t², $y = t - \frac{t^3}{2}$

5. If $x = a\cos\phi$, $y = b\sin\phi$ in ellipse, find ds.

6. Write the expression for the length of the curve x = f(t) and y = g(t) between t_1 and t_2 .

- 7. Find the points where the curve $x^2(a^2-x^2)=8a^2y^2$ meets x-axis.
- 8. What is the radius of curvature at (3,4) on the curve $x^2+y^2=25$