TELANGANA UNIVERSITY
 S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029) I SEMESTER INTERNAL ASSESSMENT II EXAMINATIONS MATHEMATICS QUESTION BANK

I. Multiple choice questions.

1. Envelope of the system of circles $(x-\alpha)^{2}+y^{2}=4 \alpha$ is
a. $y^{2}-4 x-4=a$
b. $y^{2}+4 x-4=a$
c. $y^{2}-4 x+4=a$
d. $y^{2}+4 x+4=a$
2. Locus of center of curvature is known as
c. Evolute
d. Envelope
a. Circle of curvature
b. Chord of curvature
3. The radius of curvature at (x, y) of the curve $y=c \cosh \left(\frac{x}{c}\right)$ is
a. y / c
b. y^{2} / c
c. y^{3} / c
d. cy
4. Radius of curvature of the curve $y=e^{x}$ at the point $(0,1)$ is
a. $2 \sqrt{2}$
b. $3 \sqrt{2}$
c. 0
d. None of these
5. The radius of curvature of the origin, if X -axis is the tangent at the origin, is given by
a. $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}}{2 y}$
b. $\lim _{x \rightarrow 0}^{\operatorname{Lim}} \frac{x^{2}}{y}$
c. ${ }_{x \rightarrow 0}^{\operatorname{Lim}} \frac{y^{2}}{x}$
d. ${ }_{x \rightarrow 0}^{\operatorname{Lim}} \frac{y^{2}}{2 x}$
6. The angle between the radius vector and tangent for the curve $r=a e^{\theta \cot \alpha}$ is
d. $\frac{\alpha}{4}$
7. The perimeter of the cardioids $r=(1+\cos \theta)$ is
a. 4 a
b. $4 \pi \mathrm{a}$
c. 8 a
d. $8 \pi a$
8. The circle $x^{2}+y^{2}=a^{2}$ in positive quadrant is rotated about y-axis, the volume generated is
[c]
a. πa^{3}
b. $2 \pi a^{3}$
c. $\frac{2}{3} \pi a^{3}$
d. $\frac{4}{3} \pi a^{3}$
9. The surface area of the solid of revolution of the circle $x^{2}+y^{2}=a^{2}$ about the diameter is
a. πa^{2}
b. $2 \pi a^{2}$
c. $3 \pi \mathrm{a}^{2}$
d. $4 \pi a^{2}$
10. The surface area of a cone whose semi-vertical angle is α is
a. $\pi r^{2} \sin \alpha$
a. $\pi r^{2} \sec \alpha$
b. $\pi r^{2} \operatorname{cosec} \alpha$
c. $\pi r^{2} \cos \alpha$
II. Fill in the blanks.
11. The reciprocal of the curvature at that point is defined as the Radius of curvature
12. The evolute of a curve is the envelope of its normals.
13. The whole length of the evolute of the asteroid $x=\operatorname{acos}^{3} \theta, y=\operatorname{asin}^{3} \theta$ is $\underline{12 a}$
14. If $r=\operatorname{asinn} \theta$ then P at the pole is $n a / 2$
15. The positive direction of the normal obtained by rotating the positive direction of the Tangent
16. The process of determining the tength of arc of a plane curve is known as Rectification
17. The perimeter of asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is $\underline{6 a}$
18. The length of the arc of the equiangular spiral $r=a . e^{\theta \cot \alpha}$ between the points for which the radii vectors are r_{1} and r_{2} is $\left(r_{2}-r_{1}\right) \sec \alpha$
19. The length of one arc of cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ is $\underline{8 a}$
20. The surface area of the solid generated by revolving the asteroid $x=\operatorname{acos}^{3} t, y=a \sin ^{3} t$ about the X-axis is $\underline{12 \pi a^{2} / 5}$
21. If $x=a(t+\sin t)$ and $y=a(1-\cos t)$ then unital is $\tan t / 2$
22. The envelope of the family of straight lines $y=m x+$ unital is $\underline{x}^{2}=4 a y$
23. The chord of curvature passing through the pole and parallel to X-axis_ $2 \int \sin 4$
24. For cartision equation is $\int=\frac{\left(1+y_{1}^{2}\right)^{3 / 2}}{y_{2}}$
25. In the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Radius of curvature at the end of major axis is equal to semi lactus rectum $\frac{b^{2}}{a}$
26. Radius of the curvature $r^{m}=a^{m} \operatorname{cosm} \theta$ is $\int=\frac{a^{m}}{(m+1) r^{m-1}}$
27. The equation $y=f(x)$ is rotated about the straight line $x=$ a between $y=c \& y=d$. The volume so formed is $\pi \int_{c}^{d}(a-x)^{2} d y$
28. The surface of revolution for the equation of curve $x=f(t)$ revolves about X-axis between $t=t_{1} \& t=t_{2}$ is $2 \pi \int_{t_{1}}^{t_{2}} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} d t}$
29. The length of the arc of the catenary $y=c \cosh \frac{x}{c}$ from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{a}$ is given by $\int_{0}^{a} \cosh \frac{x}{c} d x$
30. The parameter of asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is $\underline{6 a}$
III. Short answer questions.
31. Write the formula for the chord of curvature through the pole.
32. Define evolute and involute.
33. Find y 2 if $y=c \cosh \left(\frac{x}{c}\right)$
34. Convert the parametric equation to Cartesian form $\mathrm{x}=\mathrm{t}^{2}, y=t-\frac{t^{3}}{3}$
35. If $x=a \cos \phi, y=b \sin \phi$ in ellipse, find $d s$.
36. Write the expression for the length of the curve $x=f(t)$ and $y=g(t)$ between t_{1} and t_{2}.
37. Find the points where the curve $x^{2}\left(a^{2}-x^{2}\right)=8 a^{2} y^{2}$ meets x-axis.
38. What is the radius of curvature at $(3,4)$ on the curve $x^{2}+y^{2}=25$
