TELANGANA UNIVERSITY

S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029)
 V SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS
 LINEAR ALGEBRA QUESTION BANK

I. Multiple choice questions.

1. If a subspace of a vector space V is a subset H of V then
[d]
a. Zero vector of V is in H
b. H is closed under vector addition
c. H is closed under multiplication by scalars
d. All the above
2. If $A=\left[a_{1}, a_{2}\right.$, \qquad a_{n}] then $\operatorname{ColA}=$
a. $\left[a_{1}, a_{2}\right.$,
a_{n}]
b. $\left\{x: x\right.$ is in $\left.R^{n}\right\}$
c. Span $\left\{a_{1}, a_{2}\right.$ \qquad .$\left.a_{n}\right\}$
d. None of theses
3. If T is a linear transformation from a vector space V into a vector space W then
[c]
a. $T(u+v)=T(u)+T(v) \forall u, v \in V$ and scalar c
b. Both a \& b
d. None of these
4. An indexed set of vectors $\left\{v_{1}, v_{2}, \ldots \ldots \ldots . V_{p}\right\}$ in V is said to linearly independent if $c_{1} v_{1}+c_{2} v_{2}+\ldots \ldots c_{p} v_{p}=0$ has only
a. Trivial solution
b. Non-trivial solution
c. No solution
d. rational solution
5. If $B=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$ is a basis for a vector space V then the coordinate mapping $x \rightarrow[x]_{B}$ is \qquad
[b] linear transformation from V onto $R^{\prime \prime}$.
a. Onto
b. One-one
c. Both a \& b
d. None of these
6. Let $B=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$ be basis for a vector space V. For each $x \varepsilon V$, there exists a unique set of scalars $c_{1}, c_{2}, \ldots \ldots c_{n}$ such that $x=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$. This is called
a. Spanning set theorem
b. Basis theorem
c. Rank theorem
d. Unique representation theorem
7. H is subspace of V and $B=\left\{b_{1}, b_{2}\right.$, $\left.\mathrm{b}_{\mathrm{n}}\right\} \varepsilon \mathrm{V}$ is a basis for H if
a. B is a linearly independent set
b. $\mathrm{H}-\mathrm{Span}\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right.$, \qquad $\left.b_{n}\right\}$
c. Both a \& b
d. None of these
8. If V is a vector space and u, v and $w \varepsilon V$ and c, d are scalars then
a. $u+v \varepsilon V$
b. $(u+v)+w=u+(v+w)$
c. (c+d) $u-c u+d u$
d. All the above
9. $\mathrm{Col} A-R^{m}$ if and only if the equation
a. $A x=b$ has a solution $\forall b \varepsilon R^{m}$
b. $A x=0$ has only the trivial solution $c . N u l A=\{0\}$
d. All the above
10. If vector space V is not spanned by a finite set then V is said to be
a. Finite dimensional
b. Infinite dimensional
c. Finite and infinite dimensional
d. None of these
11. The dimensions of the column space and the row space of an $m \times n$ matrix A are
[a]
a. Equal
b. Unequal
c. Can't be said
d. approximately equal
12. A is an invertible matrix of order $n \times n$ then
a. $\operatorname{Col} A=R^{n}$
b. $\operatorname{dim} \operatorname{Col} A=n$
c. $\operatorname{rank} A=n$
d. All the above
13. If A is an $n \times n$ matrix then A is invertible if and only if
[c]
a. The number 0 is not an eigen value of A
b. The determinant of A is not zero
c. Both a \& b
d. None of these
14. If A and B are $n \times n$ matrices then
[d]
a. A is invertible if and only if det $A \neq 0$
b. $|A B|=|A||B|$
c. $\left|A^{\prime}\right|=|A|$
d. All the above
15. If matrix A of order $\mathrm{n} \times \mathrm{n}$ is invertible then,
[c]
a. $|A B|=|A||B|$
b. $|A|=0$
c. A row replacement operation on A does not change of determinant
d. None of these
16. If A is a 8×9 matrix with two dimensional null space then the rank of A is
[c]
a. 5
b. 6
c. 7
d. 8
17. If A is an invertible matrix of order 8×8. Then $\operatorname{dim} \operatorname{Col} A=$
[d]
a. 6
b. 7
c. 0
d. 8
18. $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 3\end{array}\right]$. The eigen values of A are
[b]
a. 1,2,0
b. 1,2,3
c. 1,0,0
d. 0,6,3
19. $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 5\end{array}\right],|A B|=60$. Then $|B|=$
a. 6
b. 2
c. 3
d. Can't be determined
20. $A=\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 4\end{array}\right]$. Then $|A|=$
a. 24
b. 0
c. 10
d. Doesn't exists
II. Fill in the blanks
21. The set consisting of only the zero vector space V is a subspace of V, called the zero subspace
22. If v_{1}, v_{2} are in vector space V and $H=\operatorname{span}\left\{v_{1}, V_{2}\right\}$ then H is a Subspace of V
23. The null space of an $m \times n$ matrix A, is the set of all solutions to the Homogeneous equations $A x=0$
24. The null space of an $m \times n$ matrix A is a subspace of R^{n}
25. The column space of an $m \times n$ matrix A is a subspace of R^{m}
26. The pivot columns of a matrix A from a basis for $\operatorname{Col} A$
27. Nul $A=\{0\}$ if and only if the equation $A x=0$ has only the Trivial solution
28. The range of T is the set of all vectors in W of the form $\mathrm{T}(\mathrm{x})$ for $\mathrm{x} \varepsilon \mathrm{V}$
29. Nul $A=\{0\}$ if and only if the linear transformation $x \rightarrow A x$ is One-one
30. If vector space V has a basis $B=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$ then any set in V containing more then n vectors must be Linearly dependent
31. If two matrices A and B are row equivalent then their row spaces are the same.
32. The rank of A is the dimension of the column space of A
33. If A is an $m X n$ matrix then, rank $A+\operatorname{dim} \operatorname{Nul} A=\underline{n}$
34. A non-zero vector x of a matrix A such that $\mathrm{Ax}=\lambda \mathrm{x}$ for scalar λ is called an Eigen vector
35. A scalar λ is called an Eigen value of A if there is a non-trivial solution x of $A x=\lambda x$
36. The eigen values of triangular matrix are the entries on its main diagonal
37. If $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{r}}$ are eigen vectors that correspond to district eigen values $\lambda_{1}, \lambda_{2} \ldots \ldots . . . \lambda_{\mathrm{r}}$ of an $\mathrm{n} \times \mathrm{n}$ matrix A, then the set $\left\{v_{1}, v_{2}, \ldots v_{r}\right\}$ is linearly independent
38. A scalar λ is an eigen value of an $\mathrm{n} \times \mathrm{n}$ matrix A if and only if $|A-\lambda I|=0$ has a non trivial solution.
39. If $\mathrm{n} \times \mathrm{n}$ matrices A and B are similar then they have same eigen values
40. If A is non invertible then $|A|=0$
