TELANGANA UNIVERSITY

S.S.R. DEGREE COLLEGE, NIZAMABAD (C.C:5029)
 III SEMESTER INTERNAL ASSESSMENT I EXAMINATIONS
 MATHEMATICS (REAL ANALYSIS) QUESTION BANK

I. Multiple choice questions.

1. The sequence $\left[\frac{(-1)^{n}}{n}\right]$ is
[a]
a. Convergent
b. Divergent
c. Oscillatory
d. None of these
2. Every monotonically increasing sequence which is not bounded above diverges to
[b]
a. $-\infty$
b. $+\infty$
c. 0
d. ε
3. If $\left\langle f_{n}\right\rangle$ and $\left\langle S_{n}\right\rangle$ are Cauchy sequences. Then
b. $\left\langle f_{n}-S_{n}\right\rangle$ is a Cauchy sequence
a. $\left\langle f_{n}+S_{n}\right\rangle$ is a Cauchy sequence
d. All the above
c. $\left\langle f_{n} S_{n}\right\rangle$ is a Cauchy sequence
4. If $\lim s_{n}=k$ and $\lim t_{n}=/$ then
c. $\lim \left(\frac{s_{n}}{t_{n}}\right)=\frac{k}{l} \quad$ d. All the above
5. The sequence $\left(1+(-1)^{n} / n\right)$ is
a. Convergent
b. Divergent
c. Oscillatory
d. None of these
6. For a sequence of positive real numbers $S_{n}, \lim S_{n}=+\infty$ if and only if
a. $\lim \left(1 / s_{n}\right)=0$
b. $\lim \left(1 / s_{n}\right)=+\infty$
c. $\lim \left(1 / s_{n}\right)=-\infty$
d. $\lim \left(1 / s_{n}\right)=a,(a$ is finite $)$
7. If s_{n} be a sequence, then $\lim \sup s_{\mathrm{n}}$ is define as
a. ${ }_{n \rightarrow \infty} \sup \left\{s_{n}: n<N\right\}$
b. $\lim _{n \rightarrow \infty} \sup \left\{s_{n}: n>N\right\}$
c. $\lim _{n \rightarrow \infty} \inf \left\{s_{n}: n<N\right\}$
d. $\lim _{n \rightarrow \infty} \inf \left\{s_{n}: n>N\right\}$
8. If $s n$ be a sequence then, $\lim \inf \left|\frac{s_{n}+1}{s_{n}}\right| \simeq \lim \inf \left|s_{n}\right|^{\frac{1}{n}}$
[a]
a. \leq
b. \geq
c. $=$
d. \neq
9. For $\mathrm{p}>0,{ }_{n \rightarrow \infty}^{\lim }\left[\frac{1}{n^{p}}\right]=$
[b]
a. 1
b. 0
c. $+\infty$
d. $-\infty$
10. For a sequence s_{n} in R, if S is a set of sub sequential limits of ' s_{n} ' then
[c]
a. $\sup s=\lim \sup s_{n}$
b. inf $s=\lim \inf s_{n}$
c. Both a \& b
d. Neither a nor b
11. The natural domain of $\mathrm{f}(\mathrm{x})=\sqrt{4-x^{2}}$ is
[b]
a. $\{x \in R: x \neq 0\}$
b. $[-2,2]$
c. $[0,1]$
d. $[-1,1]$
12. If f and g are real valued functions then, $\max (\mathrm{f}, \mathrm{g})(\mathrm{x})=$
a. $f(x)+g(x)$
b. $f(x) g(x)$
c. $\frac{f(x)}{g(x)}$
d. $\max \{f(x), g(x)\}$
13. If and g are real-valued functions then $\min (f, g)=$
[a]
a. $\frac{1}{2}(f+g)-\frac{1}{2}|f-g|$
b. $-\max (-f,-g)$
c. $\frac{1}{2}(a+b)+\frac{1}{2}|a-b|$
d. None
14. If $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are sequences in (a, b) that converges to ' a ' then
[a]
a. $\lim f\left(s_{n}\right)=\lim f\left(t_{n}\right)$
b. $f(a)=\lim f\left(s_{n}\right)$
c. $\lim f\left(s_{n}\right) \neq \operatorname{limf}\left(t_{n}\right)$
d. None
15.If $f(x)=\frac{1}{x^{2}}$ then $f^{\prime}(x)=$
a. $\frac{-1}{x^{2}}$
b. $\frac{1}{x}$
c. 0
d. $\frac{-2}{x^{3}}$
15. The domain of $\mathrm{f}(\mathrm{x})=\frac{x^{2}-4}{x-2}$ is

> [a]
a. $(-\infty, 2) \bigcup(2, \infty)$
b. R
c. $s=(-\infty, b)$
d. $(\infty, 2)$
17. The domain of gof is
b. $\{x \in \operatorname{dom}(f) ; f(x) x \in \operatorname{dom}(g)\} \quad$ c. $\operatorname{dom}(f) \cap \operatorname{dom}(g) \quad$ d. R
a. $\{x \in \operatorname{dom}(\mathrm{f}) \bigcap \mathrm{x} \in \operatorname{dom}(\mathrm{g})\}$
18. Mean value theorem is given as
a. $f(x)=y$
b. $\mathrm{f}^{\prime}(\mathrm{x})=\frac{f(x)}{g(x)}$
c. $f(x)=g(x)$
d. $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$
19. ${ }_{x \rightarrow 1}^{\lim } \frac{\sqrt{x}-1}{x-1}=$
a. 1
b. $\frac{-1}{2}$
c. 0
d. $\frac{1}{2}$
20. The function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ is uniformly continuous on
a. [-7,7]
b. $[7,7]$
c. $(0,7)$
d. $(-7,7)$
II. Fill in the blanks

1. Every convergent sequence is bounded
2. Every Cauchy sequence is bounded
3. A sequence converges if and only if it is a Cauchy sequence
4. $\lim s_{n}=k$ and $\lim t_{n}=I$ then $\lim \left(s_{n}+t_{n}\right)=\underline{k+1}$
5. If $\left\langle s_{n}\right\rangle=I$ and $\left\langle f_{n}\right\rangle=m$, then $\lim \left\langle s_{n}+f_{n}\right\rangle=+1+m$
6. If s_{n} is unbounded increasing sequence then lim $s_{n}=+\infty$
7. If s_{n} converges to s_{n} then its subsequence $s_{n k}$ converges to same limit i.e., s
8. $\sum \frac{1}{n}=+\infty$
9. If $\left(s_{n}\right) \rightarrow s$ and $\left(\mathrm{t}_{n}\right)$ is any sequence then \lim sup $\mathrm{s}_{\mathrm{n}} \mathrm{t}_{\mathrm{n}}=$. lim sup t_{n}
10. Every bounded sequence has convergent subsequence
11. The set on which f is defined is called the domain
12. The function f is said to be continuous if it is continuous on dom(f)
13. If f and g are continuous at x_{0} in R. Then $\max (f, g)$ is continuous at \underline{x}_{0}
14. A real valued function f is said to be bounded if $\{f(x): x \in \operatorname{dom}(f)\}$ is a bounded set
15. If f is uniformly continuous on a closed and bounded set S, then f is uniformly continuous
16. A function f is continuous in dom(f$)=\mathrm{s}$ if and only if $\lim _{x \rightarrow a^{s}}^{\lim } f(x)=f(a)$
17. If f is uniformly continuous on a set S and $\left(s_{n}\right)$ is a Cauchy sequence in S then $\left(f\left(s_{n}\right)\right)$ is a Cauchy sequence 18. A function \bar{f} is an extension of a function f
18. If f and g are real-valued functions, then $\min (f, g)(x)=\underline{\min \{f(x), g(x)\}}$
19. The domain of $\frac{f}{g}$ is the set_dom $(f) \cap\{x \in \operatorname{dom}(g): g(x) \neq 0\}$
III. Short Answers.
20. Define Convergent sequence.
21. Define Monotone sequence.
22. Define Cauchy sequence.
23. State Alternating series theorem.
24. State Integral test.
25. Define Continuous function.
26. Define Uniform continuous function.
27. Define Sub sequence.
28. Define Limit of a function.
29. Define Limit Inferior and Limit superior.
